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1. INTRODUCTION

With the popularity and diversity of cloud-based 
solutions from cloud providers and application 
providers/developers, there is a considerable need 
to customize these solutions and to provide cloud 
users with fine-grained mechanisms of controlling 
their cloud applications.

Many existing frameworks allow the speci-
fication of various cloud application-related 
information, like the cloud application complex 
structure (e.g., Di Nitto et al. (2013)) and functional 
requirements (e.g., Di Cosmo et al. (2013)) when 
deploying the cloud application on the cloud. 
Moreover, many tools are capable of describing 
and deploying cloud applications (e.g., Binz et 
al. (2013)) on different cloud infrastructures. The 
requirements of the cloud application stakeholders 
differ and depend on a number of variables, e.g., 
the cost of the cloud application reported to the 
number of clients, or the various cloud applica-
tion quality parameters (e.g., a banking cloud 
application differs greatly in requirements from 
a scientific cloud application). However, current 
state-of-the-art on elasticity control techniques 
require the specification of low-level, detailed 
information. For instance, Auto Scale applica-
tions provided by Amazon, Rackspace, Azure 

or RightScale enable users to specify, for each 
Virtual Machine they are using, scaling policies, 
depending on IaaS-level metrics. Proposed frame-
works take into consideration cloud application 
level metrics, e.g., response time, but do not allow 
users to specify their requirements, the optimiza-
tion factor being defined in an ad-hoc manner 
(e.g., equilibrium between the cost and response 
time) (e.g., Serrano et al. (2013), Simjanoska et 
al. (2013)).

The concept of multi-dimensional elasticity, 
covering resources elasticity, cost elasticity and 
quality elasticity (see Dustdar et al. (2011)) and 
the relations among them, shows how complex 
the elasticity control of cloud applications actu-
ally is. Such a concept facilitates custom cloud 
application elasticity depending on what a cloud 
application stakeholder (e.g., service provider) 
actually needs. A visual representation of the elas-
ticity dimensions is shown in Figure 1, each of the 
main dimensions, cost, resource and quality being 
further decomposed into storage cost and network 
cost, CPU and memory, and respectively quality 
of data and performance. Elasticity is defined 
as the relationship among these dimensions, in 
time, which change for fulfilling user’s elasticity 
requirements. Considering that distributed cloud 
applications have complex structures, each com-
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ponent having such complex elasticity behavior in 
time, we can affirm that elasticity controllers face 
challenging tasks in managing such applications.

For controlling elasticity of cloud services, 
several challenges need to be addressed:

1.  Enabling the application stakeholders to 
specify elasticity requirements, encapsulat-
ing what is a proper application elasticity 
behavior is, as various users would evaluate 
subjectively whether their cloud applications 
are behaving properly (e.g., depending on 
the business perspective, the allocated cost, 
or intended QoS for clients).

2.  Managing elasticity control at multiple ap-
plication levels (e.g., components, groups 
of components or even application level) 
for fulfilling user’s elasticity requirements.

3.  Enforcing the elasticity control in a generic 
manner, on different types of cloud infra-
structures, enabling stakeholders to obtain 
elastic applications on their preferred clouds.

In this chapter, we present elasticity control 
techniques developed in the EU CELAR Project 
for addressing above challenges. Our techniques 
enable cloud application stakeholders to specify 
the requirements at different levels of granulari-
ties, for controlling cloud applications at multiple 

levels, applying different types of elasticity control 
mechanisms suited for data-intensive or compute-
intensive parts of the cloud application. CELAR 
control techniques take real-time decisions for cloud 
application adaptation to meet user (any application 
stakeholder, e.g., application developer, or service 
provider) elasticity requirements, facilitating an 
automatic adaptation process of the cloud applica-
tion to “outside” stimuli (e.g., workload, increasing 
cost, or decreasing quality) without the need of 
user intervention. Moreover, not only real-time 
adaptation decisions are enforced but also smart 
deployment of the cloud application, considering 
cloud providers applications and estimated cost 
with respect to quality and performance.

The rest of this chapter is organized as 
follows: Section 2 presents related work. In 
Section 3 we present CELAR users and their 
possible requirements with regard to the 
elasticity control, in Section 4 we present our 
elasticity specification language and show how 
CELAR’s user interface component facilitates 
the description of multi-level elasticity require-
ments. The next section, Section 5, presents the 
conceptual architecture of the CELAR elasticity 
control module, and its techniques. We pres-
ent experiments in Section 6, a discussion on 
control frameworks in Section 7 and conclude 
the chapter in Section 8.

Figure 1. Cloud service elasticity dimensions
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2. RELATED WORK

In this section, we take a look at current cloud 
application elasticity status quo regarding cloud 
application control. We present the elasticity ca-
pabilities of cloud providers which are part of the 
CELAR project, both on data and on computing 
resources. Next, we focus on computing resource 
and data resource elasticity control, and compare 
the state of the art with what we do for control-
ling elasticity in CELAR. Finally, we take a look 

at higher, and multiple level application control 
existent in literature, and compare our approach 
with them.

2.1 Computing and Data 
Resources Low-Level Controls

We firstly consider the possibilities of runtime 
reconfiguration offered by the CELAR cloud 
providers, Flexiant and ~okeanos. Table 1 presents 
the fundamental control mechanisms available for 

Table 1. Computing resources control mechanisms

Provider Elasticity Capability Description

~okeanos Create New VM Creates a new Virtual Machine from an existing image

Start VM Starts an already created virtual machine, booting the OS

Shutdown VM Shuts down the operating system and stops the VM

Reboot VM Performs an OS restart

Destroy VM Deletes the VM

Initialize VM Configuration Number of CPUs, Size of RAM, System disk, OS, Network connectivity (dual IPV4/
IPV6),

Create private virtual L2 
network

Creating a subnet (e.g., for constructing arbitrary network topologies)

Flexiant FCO Create Bento Box Template entire complex clusters and deploy at the click of a button

Add/ Remove compute 
nodes to cluster

Flexiant offers the possibility of grouping compute nodes into clusters which are 
controlled/monitored as a group

Initialize Server 
Configuration

Number of CPUs, Size of RAM, System disk, OS, Network connectivity (dual IPV4/
IPV6), user, password, contextualization information

Create Server Creates a new server from an existing image

Start Server Starts an already creating server, booting the OS

Duplicate Server When Server A is duplicated, a new server (Server B) is created, and the initial 
configuration of Server A is applied to Server B

Shutdown Server Shuts down the operating system and stops the Server

Reboot Server Performs an OS restart

Destroy Server Deletes the Server

Manage Firewalls Add/remove/configure firewalls for the server

Manage Chef Settings for 
Server

Edit chef account settings

Create/Manage Virtual Data 
Center

Virtual Data Center is a logical grouping of servers

Application 
Specific

Configure software x with 
configuration y

Configure software which is part of the application or on which the application 
depends, in order to have different quality/performance/cost parameters for the 
application.
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computing and network resources, while Table 2 
presents data elasticity control mechanisms. Al-
though they have different names for the applica-
tions being offered (e.g., VM and Server refer to 
Virtual Machine), they have similar offerings. For 
instance, common elasticity control mechanisms 
are create/start/reboot VM, with minor differences 
e.g., Flexiant FCO offers Bento Boxes which 
are complex clusters which can be deployed as 
a group, while ~okeanos offers the opportunity 
of constructing arbitrary network topologies. 
Other big cloud providers (e.g., Google, Azure, 
or Amazon) typically offer similar capabilities, 
in the sense of VM and disk level horizontal or 
vertical scaling, with variations on hot-pluggable 

capabilities. Although they currently offer low-
level capabilities, there is a considerable effort 
towards offering services between IaaS and 
PaaS, e.g., Google managed VMs, part of their 
PaaS services, facilitate automated management 
similar with the management offered for manu-
ally created VMs.

2.2 Computing Resource 
Elasticity Control

To leverage the low-level elasticity capabilities 
of cloud infrastructures, several controllers have 
been developed. Current computing elasticity 
controllers such as Amazon AutoScalingi, Paraleap 

Table 2. Data elasticity control mechanisms

Provider Elasticity Capability Description

~okeanos Storage Configurations Local, distributed and centralized, out of which both SAN, NAS

Volume creation Create volume with specified size

Volume deletion Delete specified volume

On-the-air attachment of 
volume

Attach volume to existing computing node (VM), without the need of 
rebooting the node

On-the-air de-attachment of 
volume

De-attach volume from existing computing node (VM) without the need of 
rebooting the node

Snapshotting existing volume Create a snapshot of the specified volume (available copy-on-write of 
snapshotable volumes)

Hashing snapshots Facilitates deduplication, thus reducing the storage cost of each hashed 
object

Resizing existing volume Resize volume to specified size

Flexiant FCO Storage Configurations Three types of storage: local, distributed and centralized, out of which both 
SAN, NAS

Create disk Create disk with specified size

Remove disk Remove specified disk

Snapshot disk Take a snapshot of the disk

Add the disk to a new or 
existing deployment instance

Add existing disk to a deployment instance (group of servers)

Data Specific Clean Data Remove data which is not valid for improving the data completeness and 
data access performance

Move Data Move data from one disk to another, from one block to another, etc.

Other Data Specific Control 
Mechanisms

Reconfigure data in different other ways

Application Specific Configure software x with 
configuration y

Configure software which is part of the application or on which the 
application depends, in order to have different quality/performance/cost 
parameters for the application.
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AzureWatch and RightScale can scale – automati-
cally and seamlessly – large Cloud applications. 
However, their controlling actions are limited to 
only scaling horizontally the tiers of an application 
based on a small number of low-level metrics (e.g., 
CPU usage and memory usage). For a simple web 
application, such elasticity controllers are capable 
of only scaling the application server tier and the 
distributed database backend by adding/removing 
virtual instances, when predefined thresholds are 
violated. Moreover, for large-scale applications, 
in order to reduce costs and match the current 
demand, one requires from elasticity controllers 
to apply various complex adaptation mechanisms, 
which we refer to as elasticity control plans. These 
mechanisms are required to carefully assess the 
actual application logic with respect to its internal 
dependencies and (implicit) requirements towards 
the cloud provider APIs, including communica-
tion, consistency management and scheduling. 
Overall, managing elasticity of cloud applica-
tions by using the most popular mechanisms of 
computing resources control is not a trivial task. 
For small-scale application deployments, orga-
nizations can (de-) allocate resources manually, 
but for large-scale distributed applications which 
require a deployment comprised of multiple vir-
tual instances, which often have complex inter-
dependencies, this task must be done, inevitably, 
automatically.

To facilitate complex adaptation mecha-
nisms, an elastic compute resource provision-
ing system must not limit its decisions based 
on low-level monitoring information. Instead, 
it is required to assess heterogeneous types 
of monitoring information of different granu-
larity, from low-level system metrics (e.g., 
CPU, memory, network utilization) to high-
level application specific metrics (e.g., latency, 
throughput, availability), which are collected 
across multiple levels (physical, virtualization, 
application level) in a Cloud environment at 
different time intervals, as Trihinas et al. (2014) 
do. To accommodate these limitations, our work 

incorporates JCatascopia (presented in detail 
in Trihinas et al. (2014)), a fully-automated, 
multi-layer, interoperable cloud monitoring 
system which provides access to monitoring 
information through its REST API.

To enforce complex adaptation mechanisms, 
decisions originating from an elasticity control-
ler must also be aware of what are the offerings 
and limitations of the underlying IaaS provider. 
Specifically, the controller must consider:

1.  What are the resizing actions permitted per 
resource, and

2.  The quotas for each user/tenant.

Knowing the elasticity capabilities of each 
IaaS resource is of extreme importance when 
determining which elasticity mechanism should 
be enforced. For example, let us consider two 
IaaS providers (Provider A and Provider B) 
where only the first provider offers users the 
capability of vertically scaling virtual instances 
by allocating more memory, while both offer 
horizontally scaling capabilities. If we consider 
a three-tier web application deployed on Pro-
vider B, the control mechanism can only scale 
horizontally the Application Server Tier when 
memory utilization increases. For Provider A 
though, the decision-making mechanism can 
take advantage of Provider A’s extra capabili-
ties and decide upon either scaling horizontally 
the Application Server Tier or, enlarging the 
allocated memory of existing instances. This 
approach takes cost into consideration since 
resizing existing VM(s) may be cheaper than 
constantly initializing small virtual instances. 
Additionally, it is important for elasticity con-
trollers to also consider the per tenant quotas 
such as:

1.  The total capacity of resources that a tenant 
can allocate; and

2.  The multiplicity of resources that can be 
concurrently allocated at any given time.



228

On Controlling Elasticity of Cloud Applications in CELAR
 

In continuation of the previous example, if the 
permitted number of allocated VMs per tenant 
is low, our application deployed on Provider B 
will face quota problems when scaling to satisfy 
very high demands, whereas for Provider A, an 
intelligent elasticity controller can scale the ap-
plication both vertically and horizontally to satisfy 
an even higher demand. To accommodate these 
limitations, our work constructs an information 
management tool (described in detail in Trihinas 
et al. (2013)) which provides access to IaaS spe-
cific information.

The inherent dynamicity in the run-time topol-
ogy of elastic cloud applications raises several 
issues in run-time control. As elastic applications 
scale out/in due to elasticity requirements, their 
underlying virtual infrastructure is subject to 
run-time changes due to additional/removal of 
virtual resources (e.g., virtual machines). Thus, 
cloud application monitoring must avoid associ-
ating monitoring information only with virtual 
resources, as these resources are volatile, and are 
not present for the whole lifetime of the applica-
tion. For example, when the application usage is 
low, one application component could use only 
one virtual machine, but during peak times would 
allocate more resources, and deallocate them when 
load decreases. The other extreme of monitoring 
just the application level metrics (e.g, response 
time) is also insufficient, as such high level met-
rics do not give any indicator on the performance 
of the underlying virtual infrastructure. Thus, 
systems for monitoring elastic cloud applications 
must follow a multi-level monitoring approach. 
Both virtual infrastructure and application level 
monitoring data must be collected, and structured 
according to application’s logical structure, as done 
by Moldovan et al. (2013). Evaluating the cost of 
an application running in a cloud environment is 
challenging due to the diversity and heterogeneity 
of pricing schemes employed by various cloud 
providers (e.g., Provider A may charge per I/O 
operation, while Provider B might charge only 
per storage size). This heterogeneity generates 

a gap between the monitoring metrics collected 
by a monitoring system and the metrics targeted 
by cloud billing schemes. Moreover, evaluating 
the cost of the application requires information 
about particular cloud pricing schemes, informa-
tion that cannot be monitored directly by a cloud 
monitoring system. To address these issues, our 
work provides MELA (Moldovan et al. (2013)), 
which uses monitoring information collected from 
cloud monitoring tools and the cloud application 
structure, to provide a cross-layered, multi-level 
view over the performance and cost of elastic 
cloud applications.

2.3 Data Resources Elasticity Control

Data-related elasticity controls of cloud appli-
cation usually entail, at system level, removal/
addition of data nodes in clusters of data. Elasti-
cally scaling data resources in the cloud requires 
a data-aware approach in order to obtain the full 
benefit of extra added resources. The first and most 
important thing that needs to be addressed during 
resource adjustment is uneven data distributions: 
when data nodes join or leave from a data-storage 
component, they create imbalances in the initial 
data distribution. Even when resources do not 
change, unpredictable data access patterns often 
create unbalanced distributions that degrade per-
formance. In that cases, load balancing approaches 
that redistribute data between nodes are necessary.

Consistent hashing techniques described by 
Karger et al. (1997) are a common and effec-
tive solution for data control. The majority of 
modern NoSQL stores (e.g., Lakshman et al. 
(2010), DeCandia et al. (2007)) make use of such 
techniques to equally allocate data and incoming 
requests to the available nodes. Although hashing 
initially solves the data to machines allocation 
problem, there are many situations in which this 
proves suboptimal. Hashing destroys locality and 
thus, it cannot be employed in situations where 
semantically close items need to be stored in an 
order-preserving way. When an order-preserving 
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partitioner is desired, different load balancing 
schemes need to be devised in order to support 
range queries. Range queries are present in many 
popular applications. Therefore, algorithms and 
systems which handle this case are of great im-
portance. In the literature, there are many load 
balancing algorithms (e.g., Bharambe et al. (2004), 
Aspnes et al. (2004), Ganesan et al. (2004), Karger 
et al (2004), Konstantinou et al. (2011)) which 
support range queries.

The need to support range queries highlights 
another problem which belongs to the load bal-
ancing family. Although data placement can be 
balanced, there may be imbalances in the data 
request load. Ananthanarayanan et al. (2011) 
show that in a highly skewed data access dis-
tribution, where a small portion of popular data 
may get the majority of the applied load, the 
system performance may degrade even in over 
provisioned infrastructures.

DBalancer proposed by Konstantinou et 
al. (2013) is a generic and automated system, 
offering load balancing in NoSQL datastores, 
which we choose to use and extend. DBalancer 
is a generic distributed module that performs 
fast and cost-efficient load balancing on top 
of any distributed NoSQL datastore. The two 
main features of DBalancer are the datastore 
and algorithm abstraction. DBalancer is com-
pletely independent of the underlying NoSQL 
datastore.

2.4 Complex Service 
Elasticity Control

Schatzberg et al. (2012) raise issues that appear in 
cloud elasticity control and outline that in cloud 
computing elasticity is an important area of re-
search, which will facilitate the development of 
applications that would fully benefit from the ad-
vantages of cloud computing and from on-demand 
resources allocation. The different perspectives 

of cloud applications performance/cost/quality 
measurement are outlined by Li et al. (2012) 
who propose a list of categories of metrics which 
are used for evaluating cloud applications. Their 
retrieved cloud application evaluation metrics are 
scattered over three aspects of cloud applications: 
economics having as subdimensions cost and 
elasticity evaluation metrics, performance with 
subdimensions communication, computation, 
memory, storage evaluation metrics and security 
evaluation metrics. The abstract metrics are as-
sociated to measurable metrics for easier grasp 
of reality and for being able to actually compute 
the abstract metrics.

Truong et al. (2010) estimate the cost of 
application hosting on the cloud considering 
different sub-costs which may interfere during 
the lifetime of the application. Villegas et al. 
[Villegas 2012] propose a framework for conduct-
ing empirical research in different IaaS clouds, 
comparing different allocation and provisioning 
policies. The authors emphasize the importance 
of understanding the performance and cost as-
sociated with different provisioning or allocation 
policies, for being able to properly manage their 
application’s workloads.

Gonzalez et al. (2012) propose cloud infra-
structure-level virtual machine management 
for increasing the VM availability. The authors 
also provide a study on how different proper-
ties of the cloud infrastructure affect the VM 
availability. Chaisiri et al. (2012) focus on the 
complexity of selecting cloud applications under 
different provisioning plans, such as reserva-
tion and on-demand, defining an optimal cloud 
resource provisioning algorithm that can provi-
sion resources in multiple provisioning stages. 
Using deterministic equivalent formulation, 
sample-average approximation, and Benders de-
composition, their proposed solution minimizes 
the total cost of resource provisioning in cloud 
computing environments.
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3. MOTIVATING SCENARIOS

We focus on user scenarios which we encountered 
in CELAR, namely:

1.  The needs of a cancer research application, 
and

2.  The requirements of a gaming application.

For these cases, the applications are designed 
such that they facilitate as many elasticity capabili-
ties, in order to facilitate better elasticity control.

3.1 Cancer Research Application

The first application, SCAN, shown in Figure 
2 and described in detail in Xing et al. (2014), 
is a cancer research application designed by the 
Cancer Research UK Manchester Institute, which 
analyzes large-scale population genome data for 
helping doctors to determine personalized treat-
ments. The SCAN pipeline consists of four types 
of data processes:

1.  Genome data process;
2.  Proteome data process;

3.  Cell Image data process;
4.  Integrative network analysis.

It employs a set of biological application 
tools for those various data processes, such as 
Burrows-Wheeler Aligner (BWA) for gene align-
ment, Genome Analysis Toolkit (GATK) for e.g., 
gene variations detection, The Global Proteome 
Machine for proteomic data analyses, MaxQuant, 
CellProfiler for cell image analyses, or Cytoscape 
for data integration.

There are two major challenges regarding 
cloud-based deployments of such research pipe-
lines. First, different stages of the pipeline may 
require substantially different levels and types of 
resources. For example, mapping of deep sequenc-
ing data to genome annotation via a relational 
database such as ENSEMBL relies on the ability 
to perform frequent joins across multiple tables 
containing millions of rows, while computation 
of downstream statistics is often dependent on 
repeated numerical calculations over permuted 
data. Second, a specific bio-component within a 
SCAN stage may have different resource needs due 
to the size and complexity of the data for different 
SCAN runs. For example, SCAN mutation detec-

Figure 2. SCAN scientific application
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tion process will take different time for various 
type of genome data, e.g., 4 CPU/hours for Whole 
Exome Sequencing data (WES) or 10 CPU/hours 
for Whole Genome Sequencing (WGS) data.

To address the challenges described above, 
SCAN has been designed as an elasticity-ready 
bio-computing application so that it can be intel-
ligently orchestrated for adjusting resources to 
the various situations which can be encountered. 
For instance, considering the fact that cancer 
diagnosis and treatment is “time-sensitive”, 
sometimes doctors may need the result of SCAN 
for a patient in a particular period. Therefore 
SCAN should be executed according to user 
specified priories. It is thus important to be 
able to decide on the adequate amount and type 
of resources, depending on various metrics, 
e.g., available money, desired time, or desired 
accuracy. Moreover, SCAN is comprised of a 
wide range of bio-applications and may require 
a large amount of heterogeneous computing 
resources. The SCAN users may need to query 
information about execution of bio-applications 
within different cloud infrastructures in order to 
assist SCAN users to define, for example, policy 
of the execution.

Based on the application description above, 
our control will ensure the following:

1.  Deciding the appropriate size of resources,
2.  Ensuring predefined levels of service quality,
3.  Ensuring that the SCAN pipeline runs within 

desired costs, and
4.  Deciding the concurrency level and appro-

priate time periods of different stages.

Moreover, since SCAN is comprised of pipes 
(i.e., components grouped together), the control 
needs to facilitate the fulfillment of multi-level 
requirements (e.g., a specific pipe needs to finish 
executing, with certain quality, before another 
pipe), and controlling high level metrics (e.g., 
overall application cost, quality indicators over 
specific pipes).

The SCAN application needs to benefit from 
the on-demand storage capabilities offered by 
the IaaS providers (~okeanosvii or Flexiantvi), as 
well as application-specific control mechanisms, 
this way offering personalized treatments within 
time and cost constraints. SCAN performance 
and cost can be customized according to real-time 
elasticity metrics, thus resulting in a personalized 
control of the application. For understanding the 
relation between requirements regarding SCAN 
execution, and the performance/cost obtained, 
CELAR’s user interface component can be used 
to browse historical execution data. Moreover, 
cost and functionalities offered by different IaaS 
providers can be compared and elasticity control 
actions taken during the execution of the SCAN 
pipeline can be analyzed.

3.2 Gaming Application

Playgen’s Data Play is a gaming application, shown 
in Figure 3 and described in detail in Cox et al. 
(2014). The DataPlay application is designed with 
elasticity in mind. The main elasticity capabilities 
designed and embedded in DataPlay are horizontal 
and vertical scaling of game components, such 
as the Game Server, the Data Processing com-
ponent, and the Data Access layer. For enforcing 
such capabilities, implemented elasticity actions 
target both the virtual infrastructure (e.g., adding/
removing virtual machines), and the application 
level (e.g., reconfiguring load balancers or data 
storage).

Starting from industry known guidelines, 
Data Play requirements are response time<1.5 
seconds, I/O Performance >= 100 MBps, and 
cost as small as possible. CELAR will analyze 
the behavior of all Data Play components’ 
instances, and, leveraging on the embedded 
elasticity capabilities of the Data Play, take 
appropriate actions to ensure the performance 
and reduce cost of running the Data Play in 
cloud. Starting from the game requirements, 
our controller will extract system-level require-
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ments (e.g., CPU usage, memory usage, disk I/O 
performance) and application level requirements 
for the individual game components. Having 
a complete view over system and application 
level requirements, CELAR will monitor and 
enforce the supplied requirements using the 
game’s elasticity capabilities. DataPlay is 
centered on users exploring data (Volatile and 
Persistent data), thus introducing data-related 
elasticity concerns. Persistent data is static, or 
changed with a very low frequency (a couple 
times a year), but it is frequently accessed, high-
lighting the need for data consistency. Volatile 
data is created for each DataPlay user, and, for 
performance, holds temporary data .If a client 
is manipulating a dataset, then the application 

treats that as a different table for speed reasons, 
but if the client’s session expires then that table 
is destroyed. Therefore, for this application we 
have a continuous increase/decrease in data 
depending on the client number, on the size of 
the datasets they are interested in and on the 
time they use that data for.

Large volumes of data can also come in at 
any time, for instance from tweets and RSS feed 
updates. However, the volatile data is copied 
for individual users depending on their interest 
and gameplay. For this kind of data usage, data 
freshness is an important factor, as one needs to 
have as fresh as possible trending-related data, 
especially if the data s/he uses has been cached 
for performance reasons.

Figure 3. DataPlay application
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4. ELASTICITY REQUIREMENTS 
SPECIFICATION

4.1 SYBL Overview

For describing what types of elasticity controls 
could be required, considering the complexity 
of CELAR user’s elasticity requirements, we 
examine various types of elasticity require-
ments from different stakeholders, at different 
granularities, presented in detail in Copil et al. 
(2013a). Elasticity requirements are abstract or 
high level demands formulated by application 
stakeholders (e.g., application provider, appli-
cation developer) which affect the application 
pathway in the elasticity space presented in detail 
in Moldovan et al. (2013). Although current state 
of the art (e.g., Amazon AutoScale) facilitates 
description of low-level, infrastructure-related 
requirements, the application stakeholder should 
to be able to specify requirements concerning 
more abstract metrics (e.g., the cost per appli-
cation user that the stakeholder needs to pay 
per hour).

SYBL is a language for elasticity requirements 
specification, having three types of constructs at 
its core, enabling the specification of elasticity 
requirements:

1.  Monitoring: Enables the designation of dif-
ferent metrics or formulas of metrics which 
should be monitored;

2.  Constraint: Specifies the desired state of 
the application; while

3.  Strategy: Specifies the desired behavior of 
the application or of different application 
parts.

More information regarding the SYBL lan-
guage is available in Copil et al. (2013a). SYBL 
allows the specification of elasticity requirements 
at three levels: application unit level for component 
related elasticity requirements, service topol-
ogy elasticity requirements related to groups of 

components and application level for application 
related elasticity requirements. At service unit 
level, the SYBL user (e.g., service provider, or 
service developer) can specify requirements for 
the component which is of interest (e.g., for a busi-
ness unit we can have STRATEGY CASE Num-
berOfClients<100 AND small(ResponseTime): 
minimize (cost)). For service topology level, 
SYBL user can specify higher level goals which 
target higher level metrics (e.g., CONSTRAINT 
DataAccessSkewness < 90%), while at cloud ser-
vice level s/he can specify complex requirements 
for the entire cloud service, targeting the overall 
behavior of the cloud service (e.g., STRATEGY 
maximize (cost/clientNb))

The SYBL language is not tied to any specific 
implementation language (e.g., SYBL elasticity 
requirements can be seen as Java annotations, 
C# annotations, or Python decorators). More-
over, the SYBL elasticity requirements can be 
injected into any cloud application description 
language (e.g., TOSCA standard proposed by 
OASIS (2013)) or can be specified separately 
through XML description. The current language 
interpretation mechanism is implemented in Java, 
and supports TOSCA-injected, XML-based, or 
Java annotation-based elasticity requirements 
specification.

Figure 4 shows an excerpt from a TOSCA pol-
icy based specification, describing the constraint 
that the cost for the PilotCloudService should be 
below 100$. The SYBL elasticity requirements 
can be easily integrated within TOSCA policies, 
and interpreted by the CELAR Decision Module. 
When discovering that this requirement is violate, 
the Decision Module will evaluate a series of 
possible actions to be enforced for ensuring that 
the user’s requirements are fulfilled, as we show 
in Section 5.

We therefore facilitate the user to specify 
SYBL elasticity requirements with the help of 
CELAR user interface, as part of the process 
of cloud application description, as presented 
below.
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4.2 SYBL Elasticity Requirements 
Specification with c-Eclipse

To simplify the task of the developer, we integrate 
elasticity requirement specification into c-Eclipse, 
which facilitates the user to describe his/her appli-
cation, requirements for it and monitor application 
evolution at runtime (c-Eclipse is described in de-
tail in Sofokleous et al. (2014)). C-Eclipse enables 
the specification of SYBL elasticity requirements 
and their injection into TOSCA XML application 
descriptions. The TOSCA language does not 
directly specify how to define elasticity require-
ments for Cloud applications. The way c-Eclipse 
achieves elasticity specification in TOSCA is by 
making use of TOSCA’s Policy element. TOSCA 
defines “Policies” as the means by which we can 
express non-functional behavior or quality-of-
services for an application (see OASIS TOSCA 
Specification (2013)). Thus, we make use of the 
two types of elasticity requirements defined in the 
SYBL XML schema (Constraint and Strategy), 
and inject them into TOSCA as Policy elements 
of the corresponding types.

Figure 5 presents the Properties View of c-
Eclipse, specifically the Elasticity Tab, through 
which users can define the elasticity requirements 
of their application in an intuitive, user-friendly 
manner. Users can use simple low level metrics 
offered by the platform, such as CPU Usage, to 
complex user-defined metrics (e.g., cost/client/h), 
and specify the desired requirements for these met-
rics. They can also define more complex metrics 
by combining simple metrics with mathematical 
operators to design new metrics. Both types of 
metrics can be used to formulate the Constraints 

and Strategies for an application, using the SYBL 
language defined in Copil et al. (2013). In this 
case, the user chooses to specify a strategy which 
should be applied when a condition holds, i.e., 
when cost is sufficiently small, 1$, the strategy 
of minimizing throughput should be applied. This 
takes into account that the throughput cannot be 
minimized indefinitely, and that the stakeholders 
have a strict upper bound for the cost per hour 
which shouldn’t be exceeded.

The user-specified elasticity requirements 
are automatically translated into XML SYBL 
requirements which in turn are injected into the 
XML TOSCA description of the application. The 
code snippet below reflects the elasticity strategy 
specified through c-Eclipse, shown in Figure 
6. In this strategy, the user wants to maximize 
throughput for an application component (right 
side of Figure 5), when the cost is less than 1 $/h 
(in the center of Figure 5, the “Apply Strategy 
under Condition” window).

Elasticity requirements can be linked to simple 
application components, composite components or 
the entire application, depending on which graphi-
cal element from the application description is 
selected when the user specifies the requirements.

5. MULTI-LEVEL AND 
MULTI-DIMENSIONAL 
ELASTICITY CONTROL

In this section we focus on the mechanisms 
used in CELAR for multi-level control of the 
cloud application, for fulfilling user’s elasticity 
requirements.

Figure 4. SYBL elasticity requirement in TOSCA
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5.1 CELAR Elasticity 
Control Overview

CELAR proposes application elasticity management, 
from deployment to runtime control, in an automated 
fashion. CELAR targets the control of applications 
deployed in a single cloud. For each cloud where 
the user has an account and at least one application 
deployed, consuming cloud provider resources, 
CELAR deploys an orchestration instance (CELAR 
Orchestration VM in Figure 7), hosting all CELAR 
components necessary for deploying, monitoring, 
analyzing and controlling application’s elasticity.

Figure 7 shows a snapshot of a CELAR-based 
deployment, containing all CELAR components, 
the application which is being controlled and 
communication among them, with examples for 
~okeanos and Flexiant cloud providers. CELAR 
user first describes his/her application through 
c-Eclipse, in the Application Description Tool. 
This description includes application topology, 
elasticity requirements at the different levels of 
the cloud application, and specific artifacts of 
the application (e.g., web services, or configura-
tion scripts). All information from application 
description step is described using TOSCA 

Figure 6. Elasticity strategy expressed through policy template by c-Eclipse

Figure 5. Elasticity requirements specification with c-Eclipse
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standard defined by OASIS Technical Committee 
(2013), the description together with the artifacts 
being packed into a Cloud Application Archive 
(CSAR) and using the c-Eclipse Application 
Submission Tool, the cloud provider is selected, 
the authentication information set and the cloud 
application deployment call is sent to the CELAR 
Manager from the CELAR Orchestration VM 
on the selected cloud. For the same user, we can 
have a single orchestration instance per cloud 
provider, which controls and monitors all the 
user’s applications. The CELAR Manager has 
the mission of coordinating the communication 
among CELAR modules:

1.  It receives the cloud application archive from 
c-Eclipse, forwards it to decision module in 
case the user needs suggestions regarding 
application configurations, and then sends 
it to Resource Provisioner for allocating the 
necessary resources,

2.  Whenever the Decision Module, which 
controls the cloud application, decides that 
control processes need to be enforced for 
fulfilling user-specified requirements, the 
CELAR Manager coordinates the enforce-
ment of the generated action plan with the 
Resource Provisioner.

Figure 7. Communication among CELAR components

Figure 8. Elasticity control process – from description to control
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The process of controlling the cloud application 
is depicted in Figure 8, from c-Eclipse applica-
tion description, to deployment configuration 
and elasticity control. Whenever the CELAR 
user would like a more complex application con-
figuration describing the resources used or with 
the software artifacts to be deployed, it can ask, 
through c-Eclipse, for a smart deployment strategy, 
containing complete information for deployment 
(e.g., resource configuration, or missing artifacts). 
After the deployment, the application is monitored 
and analyzed continuously, and elasticity control 
is enforced for fulfilling elasticity requirements.

For analyzing and controlling the cloud service, 
we model various application-related information 
into a dependency graph, based on the model pub-
lished in Copil et al. (2013b), depicted in Figure 
9. At runtime, the information is represented as a 
dependency graph, with each concept instance (e.g., 
Composite Component) from the model being a 
node, while the relationships (e.g., hasElasticityCa-
pabilities in Figure 9) are edges connecting them.

The structural information captures compo-
nents (e.g., NoSQL database node, or a tool in the 
SCAN pipeline) and groups of semantically con-
nected components into composite components 
(e.g., business layer, or a SCAN stage). To each of 
these, during runtime, are associated resources like 
processes, virtual machines (equivalent to servers 
on Flexiant cloud), virtual clusters (equivalent to 
virtual data centers in Flexiant).

5.2 Cloud Application 
Deployment Configuration

For configuring cloud application deployment, 
we have developed a service, SALSA (Le et al. 
(2014)), generating smart deployment configu-
rations, by analyzing application structure and 
elasticity requirements. This service takes a 
high level application description, application 
profiling information, and available cloud de-
scription information and generates a deployment 
configuration.

Figure 9. Cloud application model
Copil et al. (2013b).
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Figure 10 depicts the simple flow of generating 
a deployment plan from the high level application 
description. When deciding whether or not they want 
to use smart deployment, the CELAR users consider 
how complex the application is, and how familiar 
they are with the application. The trigger for a smart 
deployment and necessary information is sent by 
c-Eclipse when a new application deployment or a 
re-deployment of running components is needed.

The input for SALSA Service is a TOSCA 
description from c-Eclipse which consists of a 
high level application description, containing only 
structural and application-specific information 
(e.g., application artifacts), without a description 
of resources needed for deployment. The input is 
processed via Architecture refinement and Cloud 
resource configuration modules, and produces a 
deployment configuration and sends it to c-Eclipse.

The high level application description defines 
components in an abstract way. For instance, cloud 
resources can be described using specific catego-
ries such as compute, storage, network; software 
dependencies can be represented by types such as 
web container, database, API libraries, which are 
all to be found in c-Eclipse as types of software 
requirements. For each deployment configuration 
step (see Figure 8), we interpret SYBL require-
ments, in order to detect deployment preferences 
(e.g., optimize cost, maximize resource usage, 
or maximize latency), and guide our deployment 

configuration with identified preferences. The 
architecture refinement step in Figure 10 aims 
to enrich the application topology with artifacts/
software using CELAR repository of existing 
artifacts (e.g., Tomcat web server). The output of 
this step is a full application topology with all the 
needed artifacts. Moreover, in the cloud resource 
configuration step of Figure 10, we associate the 
required resources to each components/artifacts 
previously selected, using cloud provider and 
application profiling information. The resulted 
configuration is expressed as a TOSCA descrip-
tion, and returned to c-Eclipse for being analyzed 
and modified as needed by the CELAR user.

5.3 Cloud Application 
Monitoring and Analysis

For application monitoring and analysis we use 
MELA, described in detail in Moldovan et al. 
(2013), which analyzes the elasticity of cloud 
applications, focusing on the three elasticity di-
mensions: cost, quality and performance. MELA 
provides elasticity analysis capabilities on the 
aggregated monitoring data coming from the 
Cloud Information and Performance Monitor, 
determining the elasticity boundaries, space and 
pathway of cloud application. This information 
is used by rSYBL (see Section 5.4) in controlling 
the elasticity of such applications.

Figure 10. Flow of deployment configuration
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For analyzing and controlling the cloud 
application, elasticity space boundaries are 
determined for all application components, 
composite components, and whole application, 
and are equal to the maximum and minimum 
encountered metric values when the elasticity re-
quirements were respected. Thus, starting from 
supplied user requirements, MELA determines 
and continuously updates requirements for the 
rest of the application components, require-
ments then enforced by rSYBL, as described 
in Section 5.4.

For elasticity control of cloud applications we 
also use the elasticity pathway function, which 
gives an indicator on the historical behavior of 
the cloud application and correlations between 
the application’s metrics. The elasticity pathway 
information provides a base for refining user-
defined requirements, and validating the Decision 
Module’s control strategy. In the current prototype 
of the MELA we adapt as elasticity pathway func-
tion an unsupervised behavior learning technique 
using self-organizing maps (SOMs) proposed 
by Dean et al. (2012). We classify monitoring 
snapshots by encountering rate in DOMINANT, 
NON-DOMINANT, and RARE. Such a pathway is 
important for understanding if the regular behavior 
of the application fulfills user-defined elasticity 
requirements.

5.4 Cloud Application 
Elasticity Control

Considering the model of the application described 
through the runtime dependency graph presented in 
the previous subsection, we use rSYBL elasticity 
control, described in detail in Copil et al. (2013b), 
to enable multiple levels elasticity control of the 
described application, based on the flow shown 
in Figure 11. The flow presented in Figure 11 is 
executed continually, and is based on the monitoring 
information, application description, initial deploy-
ment and different types of elasticity requirements 
(left hand side of Figure 11). The elasticity require-
ments are evaluated and conflicts which may appear 
among them are resolved. The dependency graph, 
populated with this information, is continually 
analyzed, to evaluate whether there are ways of 
improving requirements fulfillment. Based on this 
analysis, we use a map coverage approach described 
in detail in Copil et al. (2013b) for generating an 
action plan which is composed of abstract actions, 
which are mapped into infrastructure or applica-
tion level actions and then enforced with the help 
of used cloud infrastructure APIs.

Let us consider a simple example shown in 
Figure 12 of controlling the entire application, e.g., 
by the system designer. The described elasticity 
requirements, Co1, Co2, and Co3 are not conflict-

Figure 11. Flow of elasticity control
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ing, and actions are searched for fulfilling these 
requirements. Possible actions are, for instance, for 
the case the running time is higher than 10 hours 
and the cost is still in acceptable limits, to scale-out 
for the computation composite component, increas-
ing the processing speed. An example of an action 
plan, shown in Figure 12 could be:

ActionPlan1 = [ [ increaseReplication], [ scaleOut, 
setThreadPool = 100]]. 

This action plan would address performance 
issues for the second elasticity requirement Co2, 
and availability issues for the third elasticity require-
ment Co3. Each of the generated abstract actions 
are mapped into complex API calls. For instance, 
increaseReplication action would consist of calls 
for adding and configuring a new database node 
and configuring the cluster for higher replication, 
while the scaleOut action would be the addition of 
a new virtual machine, deployment of the Com-
putationEnd component on the new machine, and 
necessary calls for the new instance of the com-
ponent to join the computation topology cluster.

6. APPLICATIONS OF 
ELASTICITY CONTROL

The two applications described in Section 3 are 
currently being developed. Therefore we choose to 
showcase CELAR control approach on a Machine-
to-Machine (M2M) DaaS Service. The M2M DaaS 
Service is quite complex, containing two com-
posite components, one application server-based 
and one which is a NoSQL. This is similar to the 
gaming application presented in Section 3.2, which 
also has requirements regarding application-level 
metrics like response time and latency. Moreover, 
the M2M DaaS composite components are similar 
to pipes in SCAN application presented in Sec-
tion 3.1, in which the SCAN developer wants to 
introduce requirements at pipe-level as well as at 
component level, thus having multi-level elasticity 
control for the SCAN application.

Considering a CELAR user that wants to deploy 
this M2M DaaS in the cloud and expects an elas-
tic application behavior, the CELAR user needs 
to describe two types of information: structural 
information regarding application artifacts, and 

Figure 12. Action plan example

Figure 13. Application used for evaluation
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elasticity requirements at the different applica-
tion level. The M2M DaaS, shown in Figure 13, 
is comprised of two composite components, an 
Event Processing Composite Component and a 
Data End Composite Component. Each com-
posite component consists of two components, 
one with a processing goal, and the other acting 
as the composite component balancer/controller. 
To stress this application we generate random 
sensor event information which is processed by 
the Event Processing Composite Component, and 
stored/retrieved from the Data End Composite 
Component.

Moreover, the CELAR user is interested in 
specifying a number of elasticity requirements, 
both at component, composite component, and at 
whole application level. The requirement speci-
fied at whole application level (St1) specifies as 
a strategy to increase as much as possible the 
throughput, but under specific cost condition. 
In the upper part of Figure 13 shows the various 
elasticity requirements which we associate to the 
different levels of M2M application. For having 
the application elasticity controlled by CELAR, 
the M2M application as well as these elasticity 
requirements need to be described with c-Eclipse, 
as we describe in Section 6.1. After describing 
the application and pressing the deploy button, the 
application is controlled following the approach 
presented in Section 5, control results being pre-
sented in Section 6.2.

6.1 Application Description 
with c-Eclipse

The c-Eclipse framework provides an intuitive, 
user-friendly interface through which users can de-
scribe their applications for deployment over cloud 
platforms. The c-Eclipse user interface is depicted 
in Figure 14. At the left-hand side, the CELAR 
user can see the CELAR Project View where all 
the files related to an application description are 
organized in a hierarchy. The Palette, shown at 
the right-hand side, includes most of the elements 

required for creating application descriptions, 
categorized under different Palette sections. By 
simply dragging and dropping pictorial elements 
from the Palette onto the center Canvas, users can 
create a graphical representation of an application. 
Additional information can be provided for each 
element via the Properties View (see in Figure 
14). Application descriptions are translated on 
the fly into XML, according to the open TOSCA 
specification for cloud applications.

The first step in describing an application is 
to define the application’s structure/topology, 
following the abstract application composition-
based model described in Section 5.2.1. To do 
so, the user must use components and composite 
components from the Palette’s Components sec-
tion and then create the relationships between 
these components by using relationships from the 
Palette’s Connections section. Once the applica-
tion structure is defined, the user can define the 
application’s properties such as the VM images 
(shown in the Palettes Images section) and other 
executables to be installed on the defined applica-
tion components (Palette’s Deployment Scripts 
section). Moreover, s/he can describe the important 
monitoring metrics at each application level (Pal-
ette’s Monitoring Probes section), together with 
the elasticity actions to be applied when scaling 
the application’s deployment (Palette’s Elasticity 
Actions section), and the time when these actions 
should be applied. Specifically:

• At Component Level, the user can define 
the following:
 ◦ VM Image: That will be used by 

the underlying platform when mate-
rializing instances of the component 
(green color box).

 ◦ Key Pairs: Generated by the user that 
will be used by the underlying plat-
form when deploying the component. 
Thus, a user can make use of the key 
pair later to access the deployed com-
ponent (yellow color box).
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 ◦ User Applications: Such as .jar and 
.war files, that will be used by the un-
derlying platform when materializing 
instances of the component (orange 
color box).

• At Application, Component and Composite 
Component Level, the user can define the 
following:
 ◦ Deployment Scripts: That will be 

executed by the underlying platform 
when initializing instances of the 
component (pink color box).

 ◦ Monitoring Probes: That will be used 
by the Monitoring System to capture 
and return the corresponding metrics to 
the user. Furthermore, the metrics re-
ferred by the probes can be used in the 
specification of elasticity policies.

 ◦ Elasticity Actions: That can be ap-
plied to the components. Elasticity 
actions can also be used in the speci-
fication of elasticity policies.

Figure 14 shows the c-Eclipse application 
description, following the structure depicted in 
Figure 13. For achieving this c-Eclipse application 
description, the user will first drag a composite 
component from the Palette’s Components sec-
tion onto the Canvas to create the Event Process-
ing component. Then, he will drag two simple 
components and drop them inside the composite 
component one for the Load Balancer component 
and one for the Event Processing component. In 
a similar way the user can create the Data End 
composite component with the two simple com-
ponents inside it for the Data Controller and the 
Data Node.

Apart from the structure of the application, 
the user can specify other application proper-
ties, such as its elasticity policies. For example, 
by using the Properties View of c-Eclipse 
(bottom of Figure 14) the user can define the 
constraint of keeping the Response Time for 
the Event Processing Composite Component 
below 350 ms.

Figure 14. Application used for evaluation described in c-Eclipse
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6.2 Controlling the Application 
with CELAR Decision Module

After describing the application as above, with the 
help of c-Eclipse, the CELAR user chooses the 
cloud provider to be used, and specifies his/her 
credentials, and with a simple press of a button, 
the application, together with all the necessary 
CELAR tools are deployed in the cloud. After 
this, the CELAR user can observe the evolution 
of application metrics, which is being controlled 
with the approach presented in Section 5.

Figure 15 depicts a view from the MELA user 
interface, which is integrated into c-Eclipse for 
CELAR users to be able to follow cloud applica-
tion behavior during runtime. The CELAR user 
can observe various metrics, at the different cloud 
application levels.

By clicking on different components or com-
plex components, the user is lead to a new view, 
in which s/he can observe various charts showing 
metrics evolution in time, and statistical data. Due 
to the scaling actions enforced by the CELAR 
Decision Module, the response time is able to stay 
within the required boundaries, as shown in the 
left side of Figure 14, at a relatively stable value 

without increasing more than acceptable for a 
too high period. The user can observe that due 
to CELAR control, there is a correlation between 
the number of VMs and the number of clients, 
as depicted in Figure 16, thus showing that the 
Decision Module is able to adapt the application 
in order to accommodate a varying demand. This 
is strengthened by the elasticity pathway depicted 
in Figure 18. From the pathway’s “x” axis, the 
situation encounter rate, i.e., the percentage of 
time that situation was encountered, one can see 
that in 90% of the situations, the response time 
was maintained within acceptable values.

CELAR facilitates the intuitive, user-friendly 
description of cloud applications to be elastically 
controlled, together with their elasticity require-
ments, which can be both expressive for advanced 
users and simple for inexperienced ones. Using 
this description, CELAR analyzes and controls 
the application, managing cloud resources as well 
as application configurations for fulfilling user’s 
requirements. Moreover, the CELAR user is con-
tinually informed on the cloud service behavior, 
being able to better understand the application 
and the consequences of different requirement 
preferences.

Figure 15. Example of visual cloud application elasticity control enforcement
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The control provided by CELAR enables ap-
plications to fulfill users’ requirements, regard-
less of the highly oscillating load (number of 
clients metric in Figure 16), as shown in Figure 
17 where the response time is kept within user-
specified requirements. Moreover, this entire 
process, which normally would have meant for 

application stakeholders a lot of manual configu-
rations, is happening automatically and without 
user intervention, while keeping within user 
specified requirements, thus avoiding undesirable 
situations (e.g., very good quality parameters at 
a much too high cost from application stakehold-
ers perspective).

Figure 16. Elasticity control shown at event processing composite component

Figure 17. Response time for event processing composite component
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Table 3. Control frameworks for elastic cloud applications

Framework Name/Authors Addressed 
Cloud Level

Requirements 
Specification

Control 
Mechanisms

Deployment 
Mechanisms

Application 
Complexity

CELAR approach IaaS, PaaS SYBL language Elasticity space 
analysis, map 
coverage & 
heuristic based, 
conflict resolution

c-Eclipse for 
simple description, 
discovers missing 
dependencies, 
finds best 
configurations

Multiple 
hierarchical 
levels

CloudScale (Shen et al. (2011)) 
PRESS (Gong et al. (2010))

Hypervisor 
(Xen)

Low level SLA Los Online adaptive 
padding 
Based on signature/
state driven 
predictions

No Single-
component 
application

Kingfisher (Sharma et al. 
(2011))

Hypervisor 
(Xen)

No Integer linear 
programs

No Single-
component 
application

Martin et al. (2011) IaaS User goals through 
a goal graph

MAPE-based 
elasticity 
management

No Multi-
component 
application

Buch et al. (2012) AppScale Language for 
configuration and 
deployment

No Guided by 
language

Scientific 
applications

Malkowski et al. (2011) IaaS Low-level SLA Prediction and 
SLA driven

No n-tier 
application

Naskos et al. (2014) IaaS Automatically 
generated

Markov decision 
process based

No NoSQL 
databases

Almeida et al. (2014) IaaS SLA Uses branch and 
bound to control 
services from 
multiple clouds

No Multiple 
components

Figure 18. Elasticity pathway for event processing composite component
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7. DISCUSSION ON CONTROL 
FRAMEWORKS

Table 3 shows existing cloud control frameworks 
or tools, considering the following perspectives:

1.  The cloud model level at which the frame-
work is focused,

2.  The manner in which requirements can be 
specified by stakeholders,

3.  The control mechanisms employed,
4.  The deployment mechanisms employed, 

and
5.  Which is the supported application complex-

ity (e.g., it is assumed that the application 
consists of a single component, multiple 
components, or even hierarchical structuring 
of groups of components).

We can see that, when compared to most 
frameworks available on the market, CELAR ap-
proach encapsulates some powerful features, from 
elasticity requirements specification language to 
application components or control/deployment 
mechanisms used, which could help substantially 
application stakeholders throughout the applica-
tion elasticity control lifecycle.

8. CONCLUSION AND 
FUTURE WORK

In this chapter we presented the CELAR ap-
proach to cloud application elasticity control. 
We have shown that the complexity of cloud 
application elasticity control is highly dependent 
on the application complexity, on the underlying 
infrastructure possibilities, and on the require-
ments that the cloud application stakeholders 
have. We have shown how CELAR facilitates 
the description of cloud applications, and the 
description of stakeholder requirements with 
reference to various application parts. More-

over, we have presented our control approach, 
integrating multi-level elasticity monitoring, 
analysis and control, for fulfilling the specified 
requirements.

As CELAR is an ongoing project, we will 
further focus on studying and developing ad-
ditional analysis, enforcement and control 
mechanisms, tailored to improve the elasticity 
of a wider range of cloud applications. More-
over, for improving the quality of our elastic-
ity control plans, we will study and develop 
mechanisms for estimating the behavior of cloud 
application and individual components. We 
plan to provide CELAR both as an integrated 
platform for designing, deploying, monitoring 
and controlling elastic cloud services, and as 
individual components which can be embedded 
in existing platforms.
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KEY TERMS AND DEFINITIONS

c-Eclipse: Tool enabling users to describe, de-
ploy and monitor their application. It is published 
as an Eclipse extension with the name CAMF 
(Cloud Application Management Framework) – 
http://eclipse.org/camf. More details are available 
in Sofokleous et al. (2014).

Elasticity Boundary: The upper and lower 
bound over a set of metrics, within which the user 
elasticity requirements are fulfilled.

Elasticity Control: Management of the ap-
plication using the application capabilities (i.e., 
available actions) for fulfilling elasticity require-
ments under varying workload.

Elasticity in Cloud Computing: The property 
of adapting virtual resources used and application 
components configurations to varying workloads 
while fulfilling user requirements.

Elasticity Pathway: Defines a relationship 
between the metrics captured in the elasticity 
space, indicating how the elasticity of the service 
evolved in time.

Elasticity Requirements: User requirements 
which reference application-specific metrics, 
driving the application elasticity.

Elasticity Space: The monitored values of all 
runtime metrics having a user-defined elasticity 
boundary, and thus believed to offer a good indi-
cator over the elasticity of the service.

MELA: An elasticity monitoring and analysis 
tool (http://tuwiendsg.github.io/MELA/), offering 
functionality for logically structuring monitoring 
information and providing elasticity analytics 
over historical monitoring data, to be used by 
elasticity controllers. More details are available 
in Moldovan et al. (2013).

SYBL: A domain specific language (http://
tuwiendsg.github.io/rSYBL) enabling the speci-
fication of three types of elasticity requirements: 
monitoring, constraints and strategies requirements. 
More details are available in Copil et al. (2013a).

http://eclipse.org/camf
http://tuwiendsg.github.io/MELA/
http://tuwiendsg.github.io/rSYBL
http://tuwiendsg.github.io/rSYBL

