
222

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-4666-8213-9.ch007

On Controlling Elasticity of
Cloud Applications in CELAR

Georgiana Copil
Vienna University of
Technology, Austria

Daniel Moldovan
Vienna University of
Technology, Austria

Hung Duc Le
Vienna University of
Technology, Austria

Hong-Linh Truong
Vienna University of
Technology, Austria

Schahram Dustdar
Vienna University of
Technology, Austria

Chrystalla Sofokleous
University of Cyprus, Cyprus

Nicholas Loulloudes
University of Cyprus, Cyprus

Demetris Trihinas
University of Cyprus, Cyprus

George Pallis
University of Cyprus, Cyprus

Marios D. Dikaiakos
University of Cyprus, Cyprus

Ioannis Giannakopoulos
National University of Athens,

Greece

Nikolaos Papailiou
National University of Athens,

Greece

Ioannis Konstantinou
National University of Athens,

Greece

Craig Sheridan
FLEXIANT, UK

Christos K. K. Loverdos
Greek Research and Technology

Network, Greece

Evangelos Floros
Greek Research and Technology

Network, Greece

223

On Controlling Elasticity of Cloud Applications in CELAR

1. INTRODUCTION

With the popularity and diversity of cloud-based
solutions from cloud providers and application
providers/developers, there is a considerable need
to customize these solutions and to provide cloud
users with fine-grained mechanisms of controlling
their cloud applications.

Many existing frameworks allow the speci-
fication of various cloud application-related
information, like the cloud application complex
structure (e.g., Di Nitto et al. (2013)) and functional
requirements (e.g., Di Cosmo et al. (2013)) when
deploying the cloud application on the cloud.
Moreover, many tools are capable of describing
and deploying cloud applications (e.g., Binz et
al. (2013)) on different cloud infrastructures. The
requirements of the cloud application stakeholders
differ and depend on a number of variables, e.g.,
the cost of the cloud application reported to the
number of clients, or the various cloud applica-
tion quality parameters (e.g., a banking cloud
application differs greatly in requirements from
a scientific cloud application). However, current
state-of-the-art on elasticity control techniques
require the specification of low-level, detailed
information. For instance, Auto Scale applica-
tions provided by Amazon, Rackspace, Azure

or RightScale enable users to specify, for each
Virtual Machine they are using, scaling policies,
depending on IaaS-level metrics. Proposed frame-
works take into consideration cloud application
level metrics, e.g., response time, but do not allow
users to specify their requirements, the optimiza-
tion factor being defined in an ad-hoc manner
(e.g., equilibrium between the cost and response
time) (e.g., Serrano et al. (2013), Simjanoska et
al. (2013)).

The concept of multi-dimensional elasticity,
covering resources elasticity, cost elasticity and
quality elasticity (see Dustdar et al. (2011)) and
the relations among them, shows how complex
the elasticity control of cloud applications actu-
ally is. Such a concept facilitates custom cloud
application elasticity depending on what a cloud
application stakeholder (e.g., service provider)
actually needs. A visual representation of the elas-
ticity dimensions is shown in Figure 1, each of the
main dimensions, cost, resource and quality being
further decomposed into storage cost and network
cost, CPU and memory, and respectively quality
of data and performance. Elasticity is defined
as the relationship among these dimensions, in
time, which change for fulfilling user’s elasticity
requirements. Considering that distributed cloud
applications have complex structures, each com-

ABSTRACT

Today’s complex cloud applications are composed of multiple components executed in multi-cloud
environments. For such applications, the possibility to manage and control their cost, quality, and re-
source elasticity is of paramount importance. However, given that the cost of different services offered
by cloud providers can vary a lot with their quality/performance, elasticity controllers must consider
not only complex, multi-dimensional preferences and provisioning capabilities from stakeholders but
also various runtime information regarding cloud applications and their execution environments. In
this chapter, the authors present the elasticity control approach of the EU CELAR Project, which deals
with multi-dimensional elasticity requirements and ensures multi-level elasticity control for fulfilling
user requirements. They show the elasticity control mechanisms of the CELAR project, from application
description to multi-level elasticity control. The authors highlight the usefulness of CELAR’s mechanisms
for users, who can use an intuitive, user-friendly interface to describe and then to follow their applica-
tion elasticity behavior controlled by CELAR.

224

On Controlling Elasticity of Cloud Applications in CELAR

ponent having such complex elasticity behavior in
time, we can affirm that elasticity controllers face
challenging tasks in managing such applications.

For controlling elasticity of cloud services,
several challenges need to be addressed:

1. Enabling the application stakeholders to
specify elasticity requirements, encapsulat-
ing what is a proper application elasticity
behavior is, as various users would evaluate
subjectively whether their cloud applications
are behaving properly (e.g., depending on
the business perspective, the allocated cost,
or intended QoS for clients).

2. Managing elasticity control at multiple ap-
plication levels (e.g., components, groups
of components or even application level)
for fulfilling user’s elasticity requirements.

3. Enforcing the elasticity control in a generic
manner, on different types of cloud infra-
structures, enabling stakeholders to obtain
elastic applications on their preferred clouds.

In this chapter, we present elasticity control
techniques developed in the EU CELAR Project
for addressing above challenges. Our techniques
enable cloud application stakeholders to specify
the requirements at different levels of granulari-
ties, for controlling cloud applications at multiple

levels, applying different types of elasticity control
mechanisms suited for data-intensive or compute-
intensive parts of the cloud application. CELAR
control techniques take real-time decisions for cloud
application adaptation to meet user (any application
stakeholder, e.g., application developer, or service
provider) elasticity requirements, facilitating an
automatic adaptation process of the cloud applica-
tion to “outside” stimuli (e.g., workload, increasing
cost, or decreasing quality) without the need of
user intervention. Moreover, not only real-time
adaptation decisions are enforced but also smart
deployment of the cloud application, considering
cloud providers applications and estimated cost
with respect to quality and performance.

The rest of this chapter is organized as
follows: Section 2 presents related work. In
Section 3 we present CELAR users and their
possible requirements with regard to the
elasticity control, in Section 4 we present our
elasticity specification language and show how
CELAR’s user interface component facilitates
the description of multi-level elasticity require-
ments. The next section, Section 5, presents the
conceptual architecture of the CELAR elasticity
control module, and its techniques. We pres-
ent experiments in Section 6, a discussion on
control frameworks in Section 7 and conclude
the chapter in Section 8.

Figure 1. Cloud service elasticity dimensions

225

On Controlling Elasticity of Cloud Applications in CELAR

2. RELATED WORK

In this section, we take a look at current cloud
application elasticity status quo regarding cloud
application control. We present the elasticity ca-
pabilities of cloud providers which are part of the
CELAR project, both on data and on computing
resources. Next, we focus on computing resource
and data resource elasticity control, and compare
the state of the art with what we do for control-
ling elasticity in CELAR. Finally, we take a look

at higher, and multiple level application control
existent in literature, and compare our approach
with them.

2.1 Computing and Data
Resources Low-Level Controls

We firstly consider the possibilities of runtime
reconfiguration offered by the CELAR cloud
providers, Flexiant and ~okeanos. Table 1 presents
the fundamental control mechanisms available for

Table 1. Computing resources control mechanisms

Provider Elasticity Capability Description

~okeanos Create New VM Creates a new Virtual Machine from an existing image

Start VM Starts an already created virtual machine, booting the OS

Shutdown VM Shuts down the operating system and stops the VM

Reboot VM Performs an OS restart

Destroy VM Deletes the VM

Initialize VM Configuration Number of CPUs, Size of RAM, System disk, OS, Network connectivity (dual IPV4/
IPV6),

Create private virtual L2
network

Creating a subnet (e.g., for constructing arbitrary network topologies)

Flexiant FCO Create Bento Box Template entire complex clusters and deploy at the click of a button

Add/ Remove compute
nodes to cluster

Flexiant offers the possibility of grouping compute nodes into clusters which are
controlled/monitored as a group

Initialize Server
Configuration

Number of CPUs, Size of RAM, System disk, OS, Network connectivity (dual IPV4/
IPV6), user, password, contextualization information

Create Server Creates a new server from an existing image

Start Server Starts an already creating server, booting the OS

Duplicate Server When Server A is duplicated, a new server (Server B) is created, and the initial
configuration of Server A is applied to Server B

Shutdown Server Shuts down the operating system and stops the Server

Reboot Server Performs an OS restart

Destroy Server Deletes the Server

Manage Firewalls Add/remove/configure firewalls for the server

Manage Chef Settings for
Server

Edit chef account settings

Create/Manage Virtual Data
Center

Virtual Data Center is a logical grouping of servers

Application
Specific

Configure software x with
configuration y

Configure software which is part of the application or on which the application
depends, in order to have different quality/performance/cost parameters for the
application.

226

On Controlling Elasticity of Cloud Applications in CELAR

computing and network resources, while Table 2
presents data elasticity control mechanisms. Al-
though they have different names for the applica-
tions being offered (e.g., VM and Server refer to
Virtual Machine), they have similar offerings. For
instance, common elasticity control mechanisms
are create/start/reboot VM, with minor differences
e.g., Flexiant FCO offers Bento Boxes which
are complex clusters which can be deployed as
a group, while ~okeanos offers the opportunity
of constructing arbitrary network topologies.
Other big cloud providers (e.g., Google, Azure,
or Amazon) typically offer similar capabilities,
in the sense of VM and disk level horizontal or
vertical scaling, with variations on hot-pluggable

capabilities. Although they currently offer low-
level capabilities, there is a considerable effort
towards offering services between IaaS and
PaaS, e.g., Google managed VMs, part of their
PaaS services, facilitate automated management
similar with the management offered for manu-
ally created VMs.

2.2 Computing Resource
Elasticity Control

To leverage the low-level elasticity capabilities
of cloud infrastructures, several controllers have
been developed. Current computing elasticity
controllers such as Amazon AutoScalingi, Paraleap

Table 2. Data elasticity control mechanisms

Provider Elasticity Capability Description

~okeanos Storage Configurations Local, distributed and centralized, out of which both SAN, NAS

Volume creation Create volume with specified size

Volume deletion Delete specified volume

On-the-air attachment of
volume

Attach volume to existing computing node (VM), without the need of
rebooting the node

On-the-air de-attachment of
volume

De-attach volume from existing computing node (VM) without the need of
rebooting the node

Snapshotting existing volume Create a snapshot of the specified volume (available copy-on-write of
snapshotable volumes)

Hashing snapshots Facilitates deduplication, thus reducing the storage cost of each hashed
object

Resizing existing volume Resize volume to specified size

Flexiant FCO Storage Configurations Three types of storage: local, distributed and centralized, out of which both
SAN, NAS

Create disk Create disk with specified size

Remove disk Remove specified disk

Snapshot disk Take a snapshot of the disk

Add the disk to a new or
existing deployment instance

Add existing disk to a deployment instance (group of servers)

Data Specific Clean Data Remove data which is not valid for improving the data completeness and
data access performance

Move Data Move data from one disk to another, from one block to another, etc.

Other Data Specific Control
Mechanisms

Reconfigure data in different other ways

Application Specific Configure software x with
configuration y

Configure software which is part of the application or on which the
application depends, in order to have different quality/performance/cost
parameters for the application.

227

On Controlling Elasticity of Cloud Applications in CELAR

AzureWatch and RightScale can scale – automati-
cally and seamlessly – large Cloud applications.
However, their controlling actions are limited to
only scaling horizontally the tiers of an application
based on a small number of low-level metrics (e.g.,
CPU usage and memory usage). For a simple web
application, such elasticity controllers are capable
of only scaling the application server tier and the
distributed database backend by adding/removing
virtual instances, when predefined thresholds are
violated. Moreover, for large-scale applications,
in order to reduce costs and match the current
demand, one requires from elasticity controllers
to apply various complex adaptation mechanisms,
which we refer to as elasticity control plans. These
mechanisms are required to carefully assess the
actual application logic with respect to its internal
dependencies and (implicit) requirements towards
the cloud provider APIs, including communica-
tion, consistency management and scheduling.
Overall, managing elasticity of cloud applica-
tions by using the most popular mechanisms of
computing resources control is not a trivial task.
For small-scale application deployments, orga-
nizations can (de-) allocate resources manually,
but for large-scale distributed applications which
require a deployment comprised of multiple vir-
tual instances, which often have complex inter-
dependencies, this task must be done, inevitably,
automatically.

To facilitate complex adaptation mecha-
nisms, an elastic compute resource provision-
ing system must not limit its decisions based
on low-level monitoring information. Instead,
it is required to assess heterogeneous types
of monitoring information of different granu-
larity, from low-level system metrics (e.g.,
CPU, memory, network utilization) to high-
level application specific metrics (e.g., latency,
throughput, availability), which are collected
across multiple levels (physical, virtualization,
application level) in a Cloud environment at
different time intervals, as Trihinas et al. (2014)
do. To accommodate these limitations, our work

incorporates JCatascopia (presented in detail
in Trihinas et al. (2014)), a fully-automated,
multi-layer, interoperable cloud monitoring
system which provides access to monitoring
information through its REST API.

To enforce complex adaptation mechanisms,
decisions originating from an elasticity control-
ler must also be aware of what are the offerings
and limitations of the underlying IaaS provider.
Specifically, the controller must consider:

1. What are the resizing actions permitted per
resource, and

2. The quotas for each user/tenant.

Knowing the elasticity capabilities of each
IaaS resource is of extreme importance when
determining which elasticity mechanism should
be enforced. For example, let us consider two
IaaS providers (Provider A and Provider B)
where only the first provider offers users the
capability of vertically scaling virtual instances
by allocating more memory, while both offer
horizontally scaling capabilities. If we consider
a three-tier web application deployed on Pro-
vider B, the control mechanism can only scale
horizontally the Application Server Tier when
memory utilization increases. For Provider A
though, the decision-making mechanism can
take advantage of Provider A’s extra capabili-
ties and decide upon either scaling horizontally
the Application Server Tier or, enlarging the
allocated memory of existing instances. This
approach takes cost into consideration since
resizing existing VM(s) may be cheaper than
constantly initializing small virtual instances.
Additionally, it is important for elasticity con-
trollers to also consider the per tenant quotas
such as:

1. The total capacity of resources that a tenant
can allocate; and

2. The multiplicity of resources that can be
concurrently allocated at any given time.

228

On Controlling Elasticity of Cloud Applications in CELAR

In continuation of the previous example, if the
permitted number of allocated VMs per tenant
is low, our application deployed on Provider B
will face quota problems when scaling to satisfy
very high demands, whereas for Provider A, an
intelligent elasticity controller can scale the ap-
plication both vertically and horizontally to satisfy
an even higher demand. To accommodate these
limitations, our work constructs an information
management tool (described in detail in Trihinas
et al. (2013)) which provides access to IaaS spe-
cific information.

The inherent dynamicity in the run-time topol-
ogy of elastic cloud applications raises several
issues in run-time control. As elastic applications
scale out/in due to elasticity requirements, their
underlying virtual infrastructure is subject to
run-time changes due to additional/removal of
virtual resources (e.g., virtual machines). Thus,
cloud application monitoring must avoid associ-
ating monitoring information only with virtual
resources, as these resources are volatile, and are
not present for the whole lifetime of the applica-
tion. For example, when the application usage is
low, one application component could use only
one virtual machine, but during peak times would
allocate more resources, and deallocate them when
load decreases. The other extreme of monitoring
just the application level metrics (e.g, response
time) is also insufficient, as such high level met-
rics do not give any indicator on the performance
of the underlying virtual infrastructure. Thus,
systems for monitoring elastic cloud applications
must follow a multi-level monitoring approach.
Both virtual infrastructure and application level
monitoring data must be collected, and structured
according to application’s logical structure, as done
by Moldovan et al. (2013). Evaluating the cost of
an application running in a cloud environment is
challenging due to the diversity and heterogeneity
of pricing schemes employed by various cloud
providers (e.g., Provider A may charge per I/O
operation, while Provider B might charge only
per storage size). This heterogeneity generates

a gap between the monitoring metrics collected
by a monitoring system and the metrics targeted
by cloud billing schemes. Moreover, evaluating
the cost of the application requires information
about particular cloud pricing schemes, informa-
tion that cannot be monitored directly by a cloud
monitoring system. To address these issues, our
work provides MELA (Moldovan et al. (2013)),
which uses monitoring information collected from
cloud monitoring tools and the cloud application
structure, to provide a cross-layered, multi-level
view over the performance and cost of elastic
cloud applications.

2.3 Data Resources Elasticity Control

Data-related elasticity controls of cloud appli-
cation usually entail, at system level, removal/
addition of data nodes in clusters of data. Elasti-
cally scaling data resources in the cloud requires
a data-aware approach in order to obtain the full
benefit of extra added resources. The first and most
important thing that needs to be addressed during
resource adjustment is uneven data distributions:
when data nodes join or leave from a data-storage
component, they create imbalances in the initial
data distribution. Even when resources do not
change, unpredictable data access patterns often
create unbalanced distributions that degrade per-
formance. In that cases, load balancing approaches
that redistribute data between nodes are necessary.

Consistent hashing techniques described by
Karger et al. (1997) are a common and effec-
tive solution for data control. The majority of
modern NoSQL stores (e.g., Lakshman et al.
(2010), DeCandia et al. (2007)) make use of such
techniques to equally allocate data and incoming
requests to the available nodes. Although hashing
initially solves the data to machines allocation
problem, there are many situations in which this
proves suboptimal. Hashing destroys locality and
thus, it cannot be employed in situations where
semantically close items need to be stored in an
order-preserving way. When an order-preserving

229

On Controlling Elasticity of Cloud Applications in CELAR

partitioner is desired, different load balancing
schemes need to be devised in order to support
range queries. Range queries are present in many
popular applications. Therefore, algorithms and
systems which handle this case are of great im-
portance. In the literature, there are many load
balancing algorithms (e.g., Bharambe et al. (2004),
Aspnes et al. (2004), Ganesan et al. (2004), Karger
et al (2004), Konstantinou et al. (2011)) which
support range queries.

The need to support range queries highlights
another problem which belongs to the load bal-
ancing family. Although data placement can be
balanced, there may be imbalances in the data
request load. Ananthanarayanan et al. (2011)
show that in a highly skewed data access dis-
tribution, where a small portion of popular data
may get the majority of the applied load, the
system performance may degrade even in over
provisioned infrastructures.

DBalancer proposed by Konstantinou et
al. (2013) is a generic and automated system,
offering load balancing in NoSQL datastores,
which we choose to use and extend. DBalancer
is a generic distributed module that performs
fast and cost-efficient load balancing on top
of any distributed NoSQL datastore. The two
main features of DBalancer are the datastore
and algorithm abstraction. DBalancer is com-
pletely independent of the underlying NoSQL
datastore.

2.4 Complex Service
Elasticity Control

Schatzberg et al. (2012) raise issues that appear in
cloud elasticity control and outline that in cloud
computing elasticity is an important area of re-
search, which will facilitate the development of
applications that would fully benefit from the ad-
vantages of cloud computing and from on-demand
resources allocation. The different perspectives

of cloud applications performance/cost/quality
measurement are outlined by Li et al. (2012)
who propose a list of categories of metrics which
are used for evaluating cloud applications. Their
retrieved cloud application evaluation metrics are
scattered over three aspects of cloud applications:
economics having as subdimensions cost and
elasticity evaluation metrics, performance with
subdimensions communication, computation,
memory, storage evaluation metrics and security
evaluation metrics. The abstract metrics are as-
sociated to measurable metrics for easier grasp
of reality and for being able to actually compute
the abstract metrics.

Truong et al. (2010) estimate the cost of
application hosting on the cloud considering
different sub-costs which may interfere during
the lifetime of the application. Villegas et al.
[Villegas 2012] propose a framework for conduct-
ing empirical research in different IaaS clouds,
comparing different allocation and provisioning
policies. The authors emphasize the importance
of understanding the performance and cost as-
sociated with different provisioning or allocation
policies, for being able to properly manage their
application’s workloads.

Gonzalez et al. (2012) propose cloud infra-
structure-level virtual machine management
for increasing the VM availability. The authors
also provide a study on how different proper-
ties of the cloud infrastructure affect the VM
availability. Chaisiri et al. (2012) focus on the
complexity of selecting cloud applications under
different provisioning plans, such as reserva-
tion and on-demand, defining an optimal cloud
resource provisioning algorithm that can provi-
sion resources in multiple provisioning stages.
Using deterministic equivalent formulation,
sample-average approximation, and Benders de-
composition, their proposed solution minimizes
the total cost of resource provisioning in cloud
computing environments.

230

On Controlling Elasticity of Cloud Applications in CELAR

3. MOTIVATING SCENARIOS

We focus on user scenarios which we encountered
in CELAR, namely:

1. The needs of a cancer research application,
and

2. The requirements of a gaming application.

For these cases, the applications are designed
such that they facilitate as many elasticity capabili-
ties, in order to facilitate better elasticity control.

3.1 Cancer Research Application

The first application, SCAN, shown in Figure
2 and described in detail in Xing et al. (2014),
is a cancer research application designed by the
Cancer Research UK Manchester Institute, which
analyzes large-scale population genome data for
helping doctors to determine personalized treat-
ments. The SCAN pipeline consists of four types
of data processes:

1. Genome data process;
2. Proteome data process;

3. Cell Image data process;
4. Integrative network analysis.

It employs a set of biological application
tools for those various data processes, such as
Burrows-Wheeler Aligner (BWA) for gene align-
ment, Genome Analysis Toolkit (GATK) for e.g.,
gene variations detection, The Global Proteome
Machine for proteomic data analyses, MaxQuant,
CellProfiler for cell image analyses, or Cytoscape
for data integration.

There are two major challenges regarding
cloud-based deployments of such research pipe-
lines. First, different stages of the pipeline may
require substantially different levels and types of
resources. For example, mapping of deep sequenc-
ing data to genome annotation via a relational
database such as ENSEMBL relies on the ability
to perform frequent joins across multiple tables
containing millions of rows, while computation
of downstream statistics is often dependent on
repeated numerical calculations over permuted
data. Second, a specific bio-component within a
SCAN stage may have different resource needs due
to the size and complexity of the data for different
SCAN runs. For example, SCAN mutation detec-

Figure 2. SCAN scientific application

231

On Controlling Elasticity of Cloud Applications in CELAR

tion process will take different time for various
type of genome data, e.g., 4 CPU/hours for Whole
Exome Sequencing data (WES) or 10 CPU/hours
for Whole Genome Sequencing (WGS) data.

To address the challenges described above,
SCAN has been designed as an elasticity-ready
bio-computing application so that it can be intel-
ligently orchestrated for adjusting resources to
the various situations which can be encountered.
For instance, considering the fact that cancer
diagnosis and treatment is “time-sensitive”,
sometimes doctors may need the result of SCAN
for a patient in a particular period. Therefore
SCAN should be executed according to user
specified priories. It is thus important to be
able to decide on the adequate amount and type
of resources, depending on various metrics,
e.g., available money, desired time, or desired
accuracy. Moreover, SCAN is comprised of a
wide range of bio-applications and may require
a large amount of heterogeneous computing
resources. The SCAN users may need to query
information about execution of bio-applications
within different cloud infrastructures in order to
assist SCAN users to define, for example, policy
of the execution.

Based on the application description above,
our control will ensure the following:

1. Deciding the appropriate size of resources,
2. Ensuring predefined levels of service quality,
3. Ensuring that the SCAN pipeline runs within

desired costs, and
4. Deciding the concurrency level and appro-

priate time periods of different stages.

Moreover, since SCAN is comprised of pipes
(i.e., components grouped together), the control
needs to facilitate the fulfillment of multi-level
requirements (e.g., a specific pipe needs to finish
executing, with certain quality, before another
pipe), and controlling high level metrics (e.g.,
overall application cost, quality indicators over
specific pipes).

The SCAN application needs to benefit from
the on-demand storage capabilities offered by
the IaaS providers (~okeanosvii or Flexiantvi), as
well as application-specific control mechanisms,
this way offering personalized treatments within
time and cost constraints. SCAN performance
and cost can be customized according to real-time
elasticity metrics, thus resulting in a personalized
control of the application. For understanding the
relation between requirements regarding SCAN
execution, and the performance/cost obtained,
CELAR’s user interface component can be used
to browse historical execution data. Moreover,
cost and functionalities offered by different IaaS
providers can be compared and elasticity control
actions taken during the execution of the SCAN
pipeline can be analyzed.

3.2 Gaming Application

Playgen’s Data Play is a gaming application, shown
in Figure 3 and described in detail in Cox et al.
(2014). The DataPlay application is designed with
elasticity in mind. The main elasticity capabilities
designed and embedded in DataPlay are horizontal
and vertical scaling of game components, such
as the Game Server, the Data Processing com-
ponent, and the Data Access layer. For enforcing
such capabilities, implemented elasticity actions
target both the virtual infrastructure (e.g., adding/
removing virtual machines), and the application
level (e.g., reconfiguring load balancers or data
storage).

Starting from industry known guidelines,
Data Play requirements are response time<1.5
seconds, I/O Performance >= 100 MBps, and
cost as small as possible. CELAR will analyze
the behavior of all Data Play components’
instances, and, leveraging on the embedded
elasticity capabilities of the Data Play, take
appropriate actions to ensure the performance
and reduce cost of running the Data Play in
cloud. Starting from the game requirements,
our controller will extract system-level require-

232

On Controlling Elasticity of Cloud Applications in CELAR

ments (e.g., CPU usage, memory usage, disk I/O
performance) and application level requirements
for the individual game components. Having
a complete view over system and application
level requirements, CELAR will monitor and
enforce the supplied requirements using the
game’s elasticity capabilities. DataPlay is
centered on users exploring data (Volatile and
Persistent data), thus introducing data-related
elasticity concerns. Persistent data is static, or
changed with a very low frequency (a couple
times a year), but it is frequently accessed, high-
lighting the need for data consistency. Volatile
data is created for each DataPlay user, and, for
performance, holds temporary data .If a client
is manipulating a dataset, then the application

treats that as a different table for speed reasons,
but if the client’s session expires then that table
is destroyed. Therefore, for this application we
have a continuous increase/decrease in data
depending on the client number, on the size of
the datasets they are interested in and on the
time they use that data for.

Large volumes of data can also come in at
any time, for instance from tweets and RSS feed
updates. However, the volatile data is copied
for individual users depending on their interest
and gameplay. For this kind of data usage, data
freshness is an important factor, as one needs to
have as fresh as possible trending-related data,
especially if the data s/he uses has been cached
for performance reasons.

Figure 3. DataPlay application

233

On Controlling Elasticity of Cloud Applications in CELAR

4. ELASTICITY REQUIREMENTS
SPECIFICATION

4.1 SYBL Overview

For describing what types of elasticity controls
could be required, considering the complexity
of CELAR user’s elasticity requirements, we
examine various types of elasticity require-
ments from different stakeholders, at different
granularities, presented in detail in Copil et al.
(2013a). Elasticity requirements are abstract or
high level demands formulated by application
stakeholders (e.g., application provider, appli-
cation developer) which affect the application
pathway in the elasticity space presented in detail
in Moldovan et al. (2013). Although current state
of the art (e.g., Amazon AutoScale) facilitates
description of low-level, infrastructure-related
requirements, the application stakeholder should
to be able to specify requirements concerning
more abstract metrics (e.g., the cost per appli-
cation user that the stakeholder needs to pay
per hour).

SYBL is a language for elasticity requirements
specification, having three types of constructs at
its core, enabling the specification of elasticity
requirements:

1. Monitoring: Enables the designation of dif-
ferent metrics or formulas of metrics which
should be monitored;

2. Constraint: Specifies the desired state of
the application; while

3. Strategy: Specifies the desired behavior of
the application or of different application
parts.

More information regarding the SYBL lan-
guage is available in Copil et al. (2013a). SYBL
allows the specification of elasticity requirements
at three levels: application unit level for component
related elasticity requirements, service topol-
ogy elasticity requirements related to groups of

components and application level for application
related elasticity requirements. At service unit
level, the SYBL user (e.g., service provider, or
service developer) can specify requirements for
the component which is of interest (e.g., for a busi-
ness unit we can have STRATEGY CASE Num-
berOfClients<100 AND small(ResponseTime):
minimize (cost)). For service topology level,
SYBL user can specify higher level goals which
target higher level metrics (e.g., CONSTRAINT
DataAccessSkewness < 90%), while at cloud ser-
vice level s/he can specify complex requirements
for the entire cloud service, targeting the overall
behavior of the cloud service (e.g., STRATEGY
maximize (cost/clientNb))

The SYBL language is not tied to any specific
implementation language (e.g., SYBL elasticity
requirements can be seen as Java annotations,
C# annotations, or Python decorators). More-
over, the SYBL elasticity requirements can be
injected into any cloud application description
language (e.g., TOSCA standard proposed by
OASIS (2013)) or can be specified separately
through XML description. The current language
interpretation mechanism is implemented in Java,
and supports TOSCA-injected, XML-based, or
Java annotation-based elasticity requirements
specification.

Figure 4 shows an excerpt from a TOSCA pol-
icy based specification, describing the constraint
that the cost for the PilotCloudService should be
below 100$. The SYBL elasticity requirements
can be easily integrated within TOSCA policies,
and interpreted by the CELAR Decision Module.
When discovering that this requirement is violate,
the Decision Module will evaluate a series of
possible actions to be enforced for ensuring that
the user’s requirements are fulfilled, as we show
in Section 5.

We therefore facilitate the user to specify
SYBL elasticity requirements with the help of
CELAR user interface, as part of the process
of cloud application description, as presented
below.

234

On Controlling Elasticity of Cloud Applications in CELAR

4.2 SYBL Elasticity Requirements
Specification with c-Eclipse

To simplify the task of the developer, we integrate
elasticity requirement specification into c-Eclipse,
which facilitates the user to describe his/her appli-
cation, requirements for it and monitor application
evolution at runtime (c-Eclipse is described in de-
tail in Sofokleous et al. (2014)). C-Eclipse enables
the specification of SYBL elasticity requirements
and their injection into TOSCA XML application
descriptions. The TOSCA language does not
directly specify how to define elasticity require-
ments for Cloud applications. The way c-Eclipse
achieves elasticity specification in TOSCA is by
making use of TOSCA’s Policy element. TOSCA
defines “Policies” as the means by which we can
express non-functional behavior or quality-of-
services for an application (see OASIS TOSCA
Specification (2013)). Thus, we make use of the
two types of elasticity requirements defined in the
SYBL XML schema (Constraint and Strategy),
and inject them into TOSCA as Policy elements
of the corresponding types.

Figure 5 presents the Properties View of c-
Eclipse, specifically the Elasticity Tab, through
which users can define the elasticity requirements
of their application in an intuitive, user-friendly
manner. Users can use simple low level metrics
offered by the platform, such as CPU Usage, to
complex user-defined metrics (e.g., cost/client/h),
and specify the desired requirements for these met-
rics. They can also define more complex metrics
by combining simple metrics with mathematical
operators to design new metrics. Both types of
metrics can be used to formulate the Constraints

and Strategies for an application, using the SYBL
language defined in Copil et al. (2013). In this
case, the user chooses to specify a strategy which
should be applied when a condition holds, i.e.,
when cost is sufficiently small, 1$, the strategy
of minimizing throughput should be applied. This
takes into account that the throughput cannot be
minimized indefinitely, and that the stakeholders
have a strict upper bound for the cost per hour
which shouldn’t be exceeded.

The user-specified elasticity requirements
are automatically translated into XML SYBL
requirements which in turn are injected into the
XML TOSCA description of the application. The
code snippet below reflects the elasticity strategy
specified through c-Eclipse, shown in Figure
6. In this strategy, the user wants to maximize
throughput for an application component (right
side of Figure 5), when the cost is less than 1 $/h
(in the center of Figure 5, the “Apply Strategy
under Condition” window).

Elasticity requirements can be linked to simple
application components, composite components or
the entire application, depending on which graphi-
cal element from the application description is
selected when the user specifies the requirements.

5. MULTI-LEVEL AND
MULTI-DIMENSIONAL
ELASTICITY CONTROL

In this section we focus on the mechanisms
used in CELAR for multi-level control of the
cloud application, for fulfilling user’s elasticity
requirements.

Figure 4. SYBL elasticity requirement in TOSCA

235

On Controlling Elasticity of Cloud Applications in CELAR

5.1 CELAR Elasticity
Control Overview

CELAR proposes application elasticity management,
from deployment to runtime control, in an automated
fashion. CELAR targets the control of applications
deployed in a single cloud. For each cloud where
the user has an account and at least one application
deployed, consuming cloud provider resources,
CELAR deploys an orchestration instance (CELAR
Orchestration VM in Figure 7), hosting all CELAR
components necessary for deploying, monitoring,
analyzing and controlling application’s elasticity.

Figure 7 shows a snapshot of a CELAR-based
deployment, containing all CELAR components,
the application which is being controlled and
communication among them, with examples for
~okeanos and Flexiant cloud providers. CELAR
user first describes his/her application through
c-Eclipse, in the Application Description Tool.
This description includes application topology,
elasticity requirements at the different levels of
the cloud application, and specific artifacts of
the application (e.g., web services, or configura-
tion scripts). All information from application
description step is described using TOSCA

Figure 6. Elasticity strategy expressed through policy template by c-Eclipse

Figure 5. Elasticity requirements specification with c-Eclipse

236

On Controlling Elasticity of Cloud Applications in CELAR

standard defined by OASIS Technical Committee
(2013), the description together with the artifacts
being packed into a Cloud Application Archive
(CSAR) and using the c-Eclipse Application
Submission Tool, the cloud provider is selected,
the authentication information set and the cloud
application deployment call is sent to the CELAR
Manager from the CELAR Orchestration VM
on the selected cloud. For the same user, we can
have a single orchestration instance per cloud
provider, which controls and monitors all the
user’s applications. The CELAR Manager has
the mission of coordinating the communication
among CELAR modules:

1. It receives the cloud application archive from
c-Eclipse, forwards it to decision module in
case the user needs suggestions regarding
application configurations, and then sends
it to Resource Provisioner for allocating the
necessary resources,

2. Whenever the Decision Module, which
controls the cloud application, decides that
control processes need to be enforced for
fulfilling user-specified requirements, the
CELAR Manager coordinates the enforce-
ment of the generated action plan with the
Resource Provisioner.

Figure 7. Communication among CELAR components

Figure 8. Elasticity control process – from description to control

237

On Controlling Elasticity of Cloud Applications in CELAR

The process of controlling the cloud application
is depicted in Figure 8, from c-Eclipse applica-
tion description, to deployment configuration
and elasticity control. Whenever the CELAR
user would like a more complex application con-
figuration describing the resources used or with
the software artifacts to be deployed, it can ask,
through c-Eclipse, for a smart deployment strategy,
containing complete information for deployment
(e.g., resource configuration, or missing artifacts).
After the deployment, the application is monitored
and analyzed continuously, and elasticity control
is enforced for fulfilling elasticity requirements.

For analyzing and controlling the cloud service,
we model various application-related information
into a dependency graph, based on the model pub-
lished in Copil et al. (2013b), depicted in Figure
9. At runtime, the information is represented as a
dependency graph, with each concept instance (e.g.,
Composite Component) from the model being a
node, while the relationships (e.g., hasElasticityCa-
pabilities in Figure 9) are edges connecting them.

The structural information captures compo-
nents (e.g., NoSQL database node, or a tool in the
SCAN pipeline) and groups of semantically con-
nected components into composite components
(e.g., business layer, or a SCAN stage). To each of
these, during runtime, are associated resources like
processes, virtual machines (equivalent to servers
on Flexiant cloud), virtual clusters (equivalent to
virtual data centers in Flexiant).

5.2 Cloud Application
Deployment Configuration

For configuring cloud application deployment,
we have developed a service, SALSA (Le et al.
(2014)), generating smart deployment configu-
rations, by analyzing application structure and
elasticity requirements. This service takes a
high level application description, application
profiling information, and available cloud de-
scription information and generates a deployment
configuration.

Figure 9. Cloud application model
Copil et al. (2013b).

238

On Controlling Elasticity of Cloud Applications in CELAR

Figure 10 depicts the simple flow of generating
a deployment plan from the high level application
description. When deciding whether or not they want
to use smart deployment, the CELAR users consider
how complex the application is, and how familiar
they are with the application. The trigger for a smart
deployment and necessary information is sent by
c-Eclipse when a new application deployment or a
re-deployment of running components is needed.

The input for SALSA Service is a TOSCA
description from c-Eclipse which consists of a
high level application description, containing only
structural and application-specific information
(e.g., application artifacts), without a description
of resources needed for deployment. The input is
processed via Architecture refinement and Cloud
resource configuration modules, and produces a
deployment configuration and sends it to c-Eclipse.

The high level application description defines
components in an abstract way. For instance, cloud
resources can be described using specific catego-
ries such as compute, storage, network; software
dependencies can be represented by types such as
web container, database, API libraries, which are
all to be found in c-Eclipse as types of software
requirements. For each deployment configuration
step (see Figure 8), we interpret SYBL require-
ments, in order to detect deployment preferences
(e.g., optimize cost, maximize resource usage,
or maximize latency), and guide our deployment

configuration with identified preferences. The
architecture refinement step in Figure 10 aims
to enrich the application topology with artifacts/
software using CELAR repository of existing
artifacts (e.g., Tomcat web server). The output of
this step is a full application topology with all the
needed artifacts. Moreover, in the cloud resource
configuration step of Figure 10, we associate the
required resources to each components/artifacts
previously selected, using cloud provider and
application profiling information. The resulted
configuration is expressed as a TOSCA descrip-
tion, and returned to c-Eclipse for being analyzed
and modified as needed by the CELAR user.

5.3 Cloud Application
Monitoring and Analysis

For application monitoring and analysis we use
MELA, described in detail in Moldovan et al.
(2013), which analyzes the elasticity of cloud
applications, focusing on the three elasticity di-
mensions: cost, quality and performance. MELA
provides elasticity analysis capabilities on the
aggregated monitoring data coming from the
Cloud Information and Performance Monitor,
determining the elasticity boundaries, space and
pathway of cloud application. This information
is used by rSYBL (see Section 5.4) in controlling
the elasticity of such applications.

Figure 10. Flow of deployment configuration

239

On Controlling Elasticity of Cloud Applications in CELAR

For analyzing and controlling the cloud
application, elasticity space boundaries are
determined for all application components,
composite components, and whole application,
and are equal to the maximum and minimum
encountered metric values when the elasticity re-
quirements were respected. Thus, starting from
supplied user requirements, MELA determines
and continuously updates requirements for the
rest of the application components, require-
ments then enforced by rSYBL, as described
in Section 5.4.

For elasticity control of cloud applications we
also use the elasticity pathway function, which
gives an indicator on the historical behavior of
the cloud application and correlations between
the application’s metrics. The elasticity pathway
information provides a base for refining user-
defined requirements, and validating the Decision
Module’s control strategy. In the current prototype
of the MELA we adapt as elasticity pathway func-
tion an unsupervised behavior learning technique
using self-organizing maps (SOMs) proposed
by Dean et al. (2012). We classify monitoring
snapshots by encountering rate in DOMINANT,
NON-DOMINANT, and RARE. Such a pathway is
important for understanding if the regular behavior
of the application fulfills user-defined elasticity
requirements.

5.4 Cloud Application
Elasticity Control

Considering the model of the application described
through the runtime dependency graph presented in
the previous subsection, we use rSYBL elasticity
control, described in detail in Copil et al. (2013b),
to enable multiple levels elasticity control of the
described application, based on the flow shown
in Figure 11. The flow presented in Figure 11 is
executed continually, and is based on the monitoring
information, application description, initial deploy-
ment and different types of elasticity requirements
(left hand side of Figure 11). The elasticity require-
ments are evaluated and conflicts which may appear
among them are resolved. The dependency graph,
populated with this information, is continually
analyzed, to evaluate whether there are ways of
improving requirements fulfillment. Based on this
analysis, we use a map coverage approach described
in detail in Copil et al. (2013b) for generating an
action plan which is composed of abstract actions,
which are mapped into infrastructure or applica-
tion level actions and then enforced with the help
of used cloud infrastructure APIs.

Let us consider a simple example shown in
Figure 12 of controlling the entire application, e.g.,
by the system designer. The described elasticity
requirements, Co1, Co2, and Co3 are not conflict-

Figure 11. Flow of elasticity control

240

On Controlling Elasticity of Cloud Applications in CELAR

ing, and actions are searched for fulfilling these
requirements. Possible actions are, for instance, for
the case the running time is higher than 10 hours
and the cost is still in acceptable limits, to scale-out
for the computation composite component, increas-
ing the processing speed. An example of an action
plan, shown in Figure 12 could be:

ActionPlan1 = [[increaseReplication], [scaleOut,
setThreadPool = 100]].

This action plan would address performance
issues for the second elasticity requirement Co2,
and availability issues for the third elasticity require-
ment Co3. Each of the generated abstract actions
are mapped into complex API calls. For instance,
increaseReplication action would consist of calls
for adding and configuring a new database node
and configuring the cluster for higher replication,
while the scaleOut action would be the addition of
a new virtual machine, deployment of the Com-
putationEnd component on the new machine, and
necessary calls for the new instance of the com-
ponent to join the computation topology cluster.

6. APPLICATIONS OF
ELASTICITY CONTROL

The two applications described in Section 3 are
currently being developed. Therefore we choose to
showcase CELAR control approach on a Machine-
to-Machine (M2M) DaaS Service. The M2M DaaS
Service is quite complex, containing two com-
posite components, one application server-based
and one which is a NoSQL. This is similar to the
gaming application presented in Section 3.2, which
also has requirements regarding application-level
metrics like response time and latency. Moreover,
the M2M DaaS composite components are similar
to pipes in SCAN application presented in Sec-
tion 3.1, in which the SCAN developer wants to
introduce requirements at pipe-level as well as at
component level, thus having multi-level elasticity
control for the SCAN application.

Considering a CELAR user that wants to deploy
this M2M DaaS in the cloud and expects an elas-
tic application behavior, the CELAR user needs
to describe two types of information: structural
information regarding application artifacts, and

Figure 12. Action plan example

Figure 13. Application used for evaluation

241

On Controlling Elasticity of Cloud Applications in CELAR

elasticity requirements at the different applica-
tion level. The M2M DaaS, shown in Figure 13,
is comprised of two composite components, an
Event Processing Composite Component and a
Data End Composite Component. Each com-
posite component consists of two components,
one with a processing goal, and the other acting
as the composite component balancer/controller.
To stress this application we generate random
sensor event information which is processed by
the Event Processing Composite Component, and
stored/retrieved from the Data End Composite
Component.

Moreover, the CELAR user is interested in
specifying a number of elasticity requirements,
both at component, composite component, and at
whole application level. The requirement speci-
fied at whole application level (St1) specifies as
a strategy to increase as much as possible the
throughput, but under specific cost condition.
In the upper part of Figure 13 shows the various
elasticity requirements which we associate to the
different levels of M2M application. For having
the application elasticity controlled by CELAR,
the M2M application as well as these elasticity
requirements need to be described with c-Eclipse,
as we describe in Section 6.1. After describing
the application and pressing the deploy button, the
application is controlled following the approach
presented in Section 5, control results being pre-
sented in Section 6.2.

6.1 Application Description
with c-Eclipse

The c-Eclipse framework provides an intuitive,
user-friendly interface through which users can de-
scribe their applications for deployment over cloud
platforms. The c-Eclipse user interface is depicted
in Figure 14. At the left-hand side, the CELAR
user can see the CELAR Project View where all
the files related to an application description are
organized in a hierarchy. The Palette, shown at
the right-hand side, includes most of the elements

required for creating application descriptions,
categorized under different Palette sections. By
simply dragging and dropping pictorial elements
from the Palette onto the center Canvas, users can
create a graphical representation of an application.
Additional information can be provided for each
element via the Properties View (see in Figure
14). Application descriptions are translated on
the fly into XML, according to the open TOSCA
specification for cloud applications.

The first step in describing an application is
to define the application’s structure/topology,
following the abstract application composition-
based model described in Section 5.2.1. To do
so, the user must use components and composite
components from the Palette’s Components sec-
tion and then create the relationships between
these components by using relationships from the
Palette’s Connections section. Once the applica-
tion structure is defined, the user can define the
application’s properties such as the VM images
(shown in the Palettes Images section) and other
executables to be installed on the defined applica-
tion components (Palette’s Deployment Scripts
section). Moreover, s/he can describe the important
monitoring metrics at each application level (Pal-
ette’s Monitoring Probes section), together with
the elasticity actions to be applied when scaling
the application’s deployment (Palette’s Elasticity
Actions section), and the time when these actions
should be applied. Specifically:

• At Component Level, the user can define
the following:
 ◦ VM Image: That will be used by

the underlying platform when mate-
rializing instances of the component
(green color box).

 ◦ Key Pairs: Generated by the user that
will be used by the underlying plat-
form when deploying the component.
Thus, a user can make use of the key
pair later to access the deployed com-
ponent (yellow color box).

242

On Controlling Elasticity of Cloud Applications in CELAR

 ◦ User Applications: Such as .jar and
.war files, that will be used by the un-
derlying platform when materializing
instances of the component (orange
color box).

• At Application, Component and Composite
Component Level, the user can define the
following:
 ◦ Deployment Scripts: That will be

executed by the underlying platform
when initializing instances of the
component (pink color box).

 ◦ Monitoring Probes: That will be used
by the Monitoring System to capture
and return the corresponding metrics to
the user. Furthermore, the metrics re-
ferred by the probes can be used in the
specification of elasticity policies.

 ◦ Elasticity Actions: That can be ap-
plied to the components. Elasticity
actions can also be used in the speci-
fication of elasticity policies.

Figure 14 shows the c-Eclipse application
description, following the structure depicted in
Figure 13. For achieving this c-Eclipse application
description, the user will first drag a composite
component from the Palette’s Components sec-
tion onto the Canvas to create the Event Process-
ing component. Then, he will drag two simple
components and drop them inside the composite
component one for the Load Balancer component
and one for the Event Processing component. In
a similar way the user can create the Data End
composite component with the two simple com-
ponents inside it for the Data Controller and the
Data Node.

Apart from the structure of the application,
the user can specify other application proper-
ties, such as its elasticity policies. For example,
by using the Properties View of c-Eclipse
(bottom of Figure 14) the user can define the
constraint of keeping the Response Time for
the Event Processing Composite Component
below 350 ms.

Figure 14. Application used for evaluation described in c-Eclipse

243

On Controlling Elasticity of Cloud Applications in CELAR

6.2 Controlling the Application
with CELAR Decision Module

After describing the application as above, with the
help of c-Eclipse, the CELAR user chooses the
cloud provider to be used, and specifies his/her
credentials, and with a simple press of a button,
the application, together with all the necessary
CELAR tools are deployed in the cloud. After
this, the CELAR user can observe the evolution
of application metrics, which is being controlled
with the approach presented in Section 5.

Figure 15 depicts a view from the MELA user
interface, which is integrated into c-Eclipse for
CELAR users to be able to follow cloud applica-
tion behavior during runtime. The CELAR user
can observe various metrics, at the different cloud
application levels.

By clicking on different components or com-
plex components, the user is lead to a new view,
in which s/he can observe various charts showing
metrics evolution in time, and statistical data. Due
to the scaling actions enforced by the CELAR
Decision Module, the response time is able to stay
within the required boundaries, as shown in the
left side of Figure 14, at a relatively stable value

without increasing more than acceptable for a
too high period. The user can observe that due
to CELAR control, there is a correlation between
the number of VMs and the number of clients,
as depicted in Figure 16, thus showing that the
Decision Module is able to adapt the application
in order to accommodate a varying demand. This
is strengthened by the elasticity pathway depicted
in Figure 18. From the pathway’s “x” axis, the
situation encounter rate, i.e., the percentage of
time that situation was encountered, one can see
that in 90% of the situations, the response time
was maintained within acceptable values.

CELAR facilitates the intuitive, user-friendly
description of cloud applications to be elastically
controlled, together with their elasticity require-
ments, which can be both expressive for advanced
users and simple for inexperienced ones. Using
this description, CELAR analyzes and controls
the application, managing cloud resources as well
as application configurations for fulfilling user’s
requirements. Moreover, the CELAR user is con-
tinually informed on the cloud service behavior,
being able to better understand the application
and the consequences of different requirement
preferences.

Figure 15. Example of visual cloud application elasticity control enforcement

244

On Controlling Elasticity of Cloud Applications in CELAR

The control provided by CELAR enables ap-
plications to fulfill users’ requirements, regard-
less of the highly oscillating load (number of
clients metric in Figure 16), as shown in Figure
17 where the response time is kept within user-
specified requirements. Moreover, this entire
process, which normally would have meant for

application stakeholders a lot of manual configu-
rations, is happening automatically and without
user intervention, while keeping within user
specified requirements, thus avoiding undesirable
situations (e.g., very good quality parameters at
a much too high cost from application stakehold-
ers perspective).

Figure 16. Elasticity control shown at event processing composite component

Figure 17. Response time for event processing composite component

245

On Controlling Elasticity of Cloud Applications in CELAR

Table 3. Control frameworks for elastic cloud applications

Framework Name/Authors Addressed
Cloud Level

Requirements
Specification

Control
Mechanisms

Deployment
Mechanisms

Application
Complexity

CELAR approach IaaS, PaaS SYBL language Elasticity space
analysis, map
coverage &
heuristic based,
conflict resolution

c-Eclipse for
simple description,
discovers missing
dependencies,
finds best
configurations

Multiple
hierarchical
levels

CloudScale (Shen et al. (2011))
PRESS (Gong et al. (2010))

Hypervisor
(Xen)

Low level SLA Los Online adaptive
padding
Based on signature/
state driven
predictions

No Single-
component
application

Kingfisher (Sharma et al.
(2011))

Hypervisor
(Xen)

No Integer linear
programs

No Single-
component
application

Martin et al. (2011) IaaS User goals through
a goal graph

MAPE-based
elasticity
management

No Multi-
component
application

Buch et al. (2012) AppScale Language for
configuration and
deployment

No Guided by
language

Scientific
applications

Malkowski et al. (2011) IaaS Low-level SLA Prediction and
SLA driven

No n-tier
application

Naskos et al. (2014) IaaS Automatically
generated

Markov decision
process based

No NoSQL
databases

Almeida et al. (2014) IaaS SLA Uses branch and
bound to control
services from
multiple clouds

No Multiple
components

Figure 18. Elasticity pathway for event processing composite component

246

On Controlling Elasticity of Cloud Applications in CELAR

7. DISCUSSION ON CONTROL
FRAMEWORKS

Table 3 shows existing cloud control frameworks
or tools, considering the following perspectives:

1. The cloud model level at which the frame-
work is focused,

2. The manner in which requirements can be
specified by stakeholders,

3. The control mechanisms employed,
4. The deployment mechanisms employed,

and
5. Which is the supported application complex-

ity (e.g., it is assumed that the application
consists of a single component, multiple
components, or even hierarchical structuring
of groups of components).

We can see that, when compared to most
frameworks available on the market, CELAR ap-
proach encapsulates some powerful features, from
elasticity requirements specification language to
application components or control/deployment
mechanisms used, which could help substantially
application stakeholders throughout the applica-
tion elasticity control lifecycle.

8. CONCLUSION AND
FUTURE WORK

In this chapter we presented the CELAR ap-
proach to cloud application elasticity control.
We have shown that the complexity of cloud
application elasticity control is highly dependent
on the application complexity, on the underlying
infrastructure possibilities, and on the require-
ments that the cloud application stakeholders
have. We have shown how CELAR facilitates
the description of cloud applications, and the
description of stakeholder requirements with
reference to various application parts. More-

over, we have presented our control approach,
integrating multi-level elasticity monitoring,
analysis and control, for fulfilling the specified
requirements.

As CELAR is an ongoing project, we will
further focus on studying and developing ad-
ditional analysis, enforcement and control
mechanisms, tailored to improve the elasticity
of a wider range of cloud applications. More-
over, for improving the quality of our elastic-
ity control plans, we will study and develop
mechanisms for estimating the behavior of cloud
application and individual components. We
plan to provide CELAR both as an integrated
platform for designing, deploying, monitoring
and controlling elastic cloud services, and as
individual components which can be embedded
in existing platforms.

ACKNOWLEDGMENT

This work was supported by the European Com-
mission in terms of the CELAR FP7 project
(FP7-ICT-2011-8 #317790). We thank Dimitrios
Tsoumakos for fruitful discussions.

REFERENCES

Almeida, A., Dantas, F., Cavalcante, E., & Ba-
tista, T. (2014). A branch-and-bound algorithm
for autonomic adaptation of multi-cloud appli-
cations. In Proceedings of IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid
Computing (CCGrid). IEEE/ACM. doi:10.1109/
CCGrid.2014.25

Ananthanarayanan, G., Agarwal, S., Kandula, S.,
Greenberg, A., Stoica, I., Harlan, D., & Harris,
E. (2011). Scarlett: Coping with skewed content
popularity in MapReduce clusters. In Proceedings
of the Sixth Conference on Computer Systems.
ACM. doi:10.1145/1966445.1966472

http://dx.doi.org/10.1109/CCGrid.2014.25
http://dx.doi.org/10.1109/CCGrid.2014.25
http://dx.doi.org/10.1145/1966445.1966472

247

On Controlling Elasticity of Cloud Applications in CELAR

Aspnes, J., Kirsch, J., & Krishnamurthy, A.
(2004). Load balancing and locality in range-
queriable data structures. In Proceedings of
the Twenty-Third Annual ACM Symposium on
Principles of Distributed Computing. ACM.
doi:10.1145/1011767.1011785

Bharambe, A. R., Agrawal, M., & Seshan, S.
(2004). Mercury: Supporting scalable multi-
attribute range queries. In Proceedings of the
2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Com-
munications. ACM.

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O.,
Leymann, F., Nowak, A., & Wagner, S. (2013)
OpenTOSCA – A runtime for TOSCA-based cloud
services. In Proceedings of the 11th International
Conference. Academic Press. doi:10.1007/978-3-
642-45005-1_62

Bunch, C., Drawert, B., Chohan, N., Krintz, C.,
Petzold, L., & Shams, K. (2012, March). Language
and runtime support for automatic configuration
and deployment of scientific computing software
over cloud fabrics. Journal of Grid Computing,
10(1), 23–46. doi:10.1007/s10723-012-9213-8

Chaisiri, S., Lee, B.-S., & Niyato, D. (2012). Op-
timization of resource provisioning cost in cloud
computing. IEEE Transactions on Services Com-
puting, 5(2), 164–177. doi:10.1109/TSC.2011.7

Copil, G., Moldovan, D., Truong, H.-L., & Dust-
dar, S. (2013a). SYBL: An extensible language
for controlling elasticity in cloud applications.
In Proceedings of 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Comput-
ing - CCGRID2013. IEEE/ACM. doi:10.1109/
CCGrid.2013.42

Copil, G., Moldovan, D., Truong, H.-L., &
Dustdar, S. (2013b). Multi-level elasticity con-
trol of cloud services. In Proceedings of 11th
International Conference on Service Oriented
Computing. Berlin, Germany: Academic Press.
doi:10.1007/978-3-642-45005-1_31

Cox, B., Allsopp, J., Moldovan, D., Star, K., Gar-
cia, U., & Le, D. H. (2014). CELAR deliverable:
Cloud policy game design document. Retrieved
from http://www.celarcloud.eu/wp-content/
uploads/2014/04/celar_d7.1_finalrelease_1.pdf

DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin, A., &
Vogels, W. et al. (2007) Dynamo: Amazon’s
highly available key-value store. In Proceedings
of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles (SOSP ‘07). ACM.
doi:10.1145/1294261.1294281

Di Cosmo, R., Mauro, J., Zacchiroli, S., & Za-
vattaro, G. (2013). Component reconfiguration
in the presence of conflict. In Proceedings of
ICALP 2013 (vol. 2, pp. 187 – 198). Springer.
doi:10.1007/978-3-642-39212-2_19

Di Nitto, E. (2013). Supporting the develop-
ment and operation of multi-cloud services:
The MODAClouds approach. In Proceedings of
15th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing
(SYNASC). Academic Press. doi:10.1109/SYN-
ASC.2013.61

Dustdar, S., Guo Y., Satzger, B., & Truong, H.-
L. (2011). Principles of elastic processes. IEEE
Internet Computing, 15(5), 66-71.

http://dx.doi.org/10.1145/1011767.1011785
http://dx.doi.org/10.1007/978-3-642-45005-1_62
http://dx.doi.org/10.1007/978-3-642-45005-1_62
http://dx.doi.org/10.1007/s10723-012-9213-8
http://dx.doi.org/10.1109/TSC.2011.7
http://dx.doi.org/10.1109/CCGrid.2013.42
http://dx.doi.org/10.1109/CCGrid.2013.42
http://dx.doi.org/10.1007/978-3-642-45005-1_31
http://www.celarcloud.eu/wp-content/uploads/2014/04/celar_d7.1_finalrelease_1.pdf
http://www.celarcloud.eu/wp-content/uploads/2014/04/celar_d7.1_finalrelease_1.pdf
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1007/978-3-642-39212-2_19
http://dx.doi.org/10.1109/SYNASC.2013.61
http://dx.doi.org/10.1109/SYNASC.2013.61

248

On Controlling Elasticity of Cloud Applications in CELAR

Gambi, A., Moldovan, D., Copil, G., Truong,
H.-L., & Dustdar, S. (2013). On estimating ac-
tuation delays in elastic computing systems. In
Proceedings of the 8th International Symposium
on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ‘13). IEEE Press.
doi:10.1109/SEAMS.2013.6595490

Gong, Z., Gu, X., & Wilkes, J. (2010, October).
Press: Predictive elastic resource scaling for cloud
systems. In Proceedings of Network and Service
Management (CNSM) (pp. 9-16). IEEE.

Gonzalez, A. J., & Helvik, B. E. (2012) System
management to comply with SLA availability
guarantees in cloud computing. In Proceedings of
2012 IEEE 4th International Conference on Cloud
Computing Technology and Science (CloudCom)
(pp. 325-332). IEEE. http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=6427508&isn
umber=6427477

Karger, D., Lehman, E., Leighton, T., Panigrahy,
R., Levine, M., & Lewin, D. (1997). Consistent
hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide
web. In Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing (STOC
‘97). ACM. doi:10.1145/258533.258660

Karger, D., & Ruhl, M. (2004) Simple efficient
load balancing algorithms for peer-to-peer
systems. In Proceedings of the Sixteenth An-
nual ACM Symposium on Parallelism in Algo-
rithms and Architectures (pp. 36-43). ACM.
doi:10.1145/1007912.1007919

Konstantinou, I., Tsoumakos, D., Mytilinis, I., &
Koziris, N. (2011). Fast and cost-effective online
load-balancing in distributed range-queriable
system. IEEE Transactions on Parallel and Dis-
tributed Systems, 22(8), 1350–1364. doi:10.1109/
TPDS.2010.200

Konstantinou, I., Tsoumakos, D., Mytilinis, I., &
Koziris, N. (2013) DBalancer: Distributed load
balancing for NoSQL data-stores. In Proceed-
ings of the 2013 International Conference on
Management of Data (pp. 1037-1040). ACM.
doi:10.1145/2463676.2465232

Lakshman, A., & Malik, P. (2010, April). Cas-
sandra: A decentralized structured storage sys-
tem. SIGOPS Oper. Syst. Rev., 44(2), 35–40.
doi:10.1145/1773912.1773922

Le, D.-H., Truong, H.-L., Copil, G., Moser, O.,
Nastic, S., Gambi, A., & Dustdar, S. (2014). SAL-
SA: A dynamic configuration tool for cloud-based
applications. In Proceedings of 6th International
Conference on Cloud Computing. Academic Press.

Li, Z., O’Brien, L., Zhang, H., & Cai, R. (2012).
On a catalogue of metrics for evaluating com-
mercial cloud services. In Proceedings of 2012
ACM/IEEE 13th International Conference on Grid
Computing (GRID) (pp. 164-173). ACM/IEEE.
doi:10.1109/Grid.2012.15

Malkowski, S. J., Hedwig, M., Li, J., Pu, C., &
Neumann, D. (2011). Automated control for elastic
n-tier workloads based on empirical modeling. In
Proceedings of the 8th ACM International Confer-
ence on Autonomic Computing (ICAC ‘11). ACM.
doi:10.1145/1998582.1998604

Martin, P., Brown, A., Powley, W., & Vazquez-
Poletti, J. L. (2011). Autonomic management
of elastic services in the cloud. In Proceedings
of 2011 IEEE Symposium on Computers and
Communications (ISCC) (pp. 135-140). IEEE.
doi:10.1109/ISCC.2011.5984006

Moldovan, D., Copil, G., Truong, H.-L., & Dust-
dar, S. (2013). MELA: Monitoring and analyzing
elasticity of cloud services. In Proceedings of 5th
International Conference on Cloud Computing.
Academic Press.

http://dx.doi.org/10.1109/SEAMS.2013.6595490
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6427508&isnumber=6427477
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6427508&isnumber=6427477
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6427508&isnumber=6427477
http://dx.doi.org/10.1145/258533.258660
http://dx.doi.org/10.1145/1007912.1007919
http://dx.doi.org/10.1109/TPDS.2010.200
http://dx.doi.org/10.1109/TPDS.2010.200
http://dx.doi.org/10.1145/2463676.2465232
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1109/Grid.2012.15
http://dx.doi.org/10.1145/1998582.1998604
http://dx.doi.org/10.1109/ISCC.2011.5984006

249

On Controlling Elasticity of Cloud Applications in CELAR

Naskos, A., Stachtiari, E., Gounaris, A., Katsaros,
P., Tsoumakos, D., Konstantinou, I., & Sioutas, S.
(2014). Cloud elasticity using probabilistic model
checking. CoRR abs/1405.4699

OASIS Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA). (2013).
Retrieved from http://docs.oasis-open.org/tosca/
TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

Schatzberg, D., Appavoo, J., Krieger, O., & Van
Hensbergen, E. (2012). Why elasticity matters.
Technical Report BUCS-TR-2012-006. Computer
Science Department, Boston University.

Serrano, D., Bouchenak, S., Kouki, Y., Ledoux,
T., Lejeune, J., Sopena, J., . . . Sens, P. (2013).
Towards QoS-oriented SLA guarantees for online
cloud services. In Proceedings of 13th IEEE/
ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid). IEEE/ACM.
doi:10.1109/CCGrid.2013.66

Sharma, U., Shenoy, P., Sahu, S., & Shaikh,
A. (2011). A cost-aware elasticity provisioning
system for the cloud. In Proceedings of the 2011
31st International Conference on Distributed
Computing Systems (ICDCS ‘11). IEEE Computer
Society. doi:10.1109/ICDCS.2011.59

Shen, Z., Subbiah, S., Gu, X., & Wilkes, J. (2011).
CloudScale: Elastic resource scaling for multi-
tenant cloud systems. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (SOCC
‘11). ACM. doi:10.1145/2038916.2038921

Simjanoska, M., Ristov, S., Velkoski, G., &
Gusev, M. (2013). Scaling the performance and
cost while scaling the load and resources in the
cloud. In Proceedings of 2013 36th International
Convention on Information & Communication
Technology Electronics & Microelectronics
(MIPRO). Academic Press.

Sofokleous, C., Loulloudes, N., Trihinas, D.,
Pallis, G., & Dikaiakos, M. (2014). c-Eclipse: An
open-source management framework for cloud
applications. In Proceedings of EuroPar 2014.
Porto, Portugal: Academic Press.

Trihinas, D., Loulloudes, N., Moldovan, D.,
Sofokleous, S., Pallis, G., & Dikaiakos, M. D.
(2013). CELAR deliverable: Cloud monitoring
tool V1. Retrieved from http://www.celarcloud.eu/
wp-content/uploads/2013/11/Cloud-Monitoring-
Tool-V1.pdf

Trihinas, D., Pallis, G., & Dikaiakos, M. D.
(2014a). JCatascopia: Monitoring elastically
adaptive applications in the cloud. In Proceedings
of 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. IEEE/ACM.
doi:10.1109/CCGrid.2014.41

Villegas, D., Antoniou, A., Sadjadi, S. M., &
Iosup, A. (2012). An analysis of provisioning and
allocation policies for infrastructure-as-a-service
clouds. In Proceedings of the 2012 12th IEEE/
ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012) (CCGRID
‘12). IEEE Computer Society. doi:10.1109/CC-
Grid.2012.46

Xing, W., Tsoumakos, D., Sofokleous, S., Liabotis,
I., Floros, V., & Loverdos, C. (2014). CELAR de-
liverable: Translational cancer detection pipeline
design. Academic Press.

ADDITIONAL READING

Almeida, A., Dantas, F., Cavalcante, E., & Batista,
T. (2014) A Branch-and-Bound Algorithm for
Autonomic Adaptation of Multi-cloud Applica-
tions, IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid),
2014 14th, vol., no., pp.315,323, 26-29 May 2014
doi:10.1109/CCGrid.2014.25

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://dx.doi.org/10.1109/CCGrid.2013.66
http://dx.doi.org/10.1109/ICDCS.2011.59
http://dx.doi.org/10.1145/2038916.2038921
http://www.celarcloud.eu/wp-content/uploads/2013/11/Cloud-Monitoring-Tool-V1.pdf
http://www.celarcloud.eu/wp-content/uploads/2013/11/Cloud-Monitoring-Tool-V1.pdf
http://www.celarcloud.eu/wp-content/uploads/2013/11/Cloud-Monitoring-Tool-V1.pdf
http://dx.doi.org/10.1109/CCGrid.2014.41
http://dx.doi.org/10.1109/CCGrid.2012.46
http://dx.doi.org/10.1109/CCGrid.2012.46
http://dx.doi.org/10.1109/CCGrid.2014.25

250

On Controlling Elasticity of Cloud Applications in CELAR

Bersani, M. M., Bianculli, D., Dustdar, S., Gambi,
A., Ghezzi, C., & Krstić, S. (2014) Towards
the formalization of properties of cloud-based
elastic systems. Proceedings of the 6th Interna-
tional Workshop on Principles of Engineering
Service-Oriented and Cloud Systems (PESOS
2014). ACM, New York, NY, USA, 38-47.
doi:10.1145/2593793.2593798

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O.,
Leymann, F., Nowak, A., & Wagner, S. (2013)
OpenTOSCA – A Runtime for TOSCA-Based
Cloud services. In Proceedings of the 11th In-
ternational Conference, ICSOC 2013, Berlin,
Germany, December 2-5, 2013, pp 692-695,
doi:10.1007/978-3-642-45005-1_62

Copil, G., Moldovan, D., & Truong, H.-L., & Dust-
dar, S. (2013a) SYBL: an Extensible Language for
Controlling Elasticity in Cloud Applications. 13th
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing - CCGRID2013, Delft,
the Netherlands, May 14-16, 2013. doi:10.1109/
CCGrid.2013.42

Copil, G., Moldovan, D., Truong, H.-L., & Dust-
dar, S. (2013b) Multi-level Elasticity Control of
Cloud Services,the 11th International Conference
on Service Oriented Computing. Berlin, Germany,
on 2-5 December, 2013. doi:978-3-642-45005-1
doi:10.1007/978-3-642-45005-1_31

Copil, G., Trihinas, D., Truong, H.-L., Moldovan,
D., Pallis, G., Dustdar, S., & Dikaiakos, M. (2014)
ADVISE - a Framework for Evaluating Cloud
Service Elasticity Behavior, 12th International
Conference on Service Oriented Computing. Paris,
France, 3-6 November, 2014. doi:10.1007/978-3-
662-45391-9_19

Dustdar, S. 2014. Principles and methods
for elastic computing. In Proceedings of the
17th international ACM Sigsoft symposium
on Component-based software engineering
(CBSE ‘14). ACM, New York, NY, USA, 1-2.
doi:10.1145/2602458.2611455

Dustdar, S., Guo Y., Satzger, B., & Truong, H.-L.
(2011) Principles of Elastic Processes, Internet
Computing, IEEE, vol.15, no.5, pp.66,71, Sept.-
Oct. 2011

Gambi, A., Filieri, A., & Dustdar, S. (2013) Itera-
tive test suites refinement for elastic computing
systems. Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/
FSE 2013). ACM, New York, NY, USA, 635-638.
doi:10.1145/2491411.2494579

Guinea, S., Kecskemeti, G., Marconi, A., &
Wetzstein, B. (2011) Multi-layered monitoring
and adaptation, Proceedings of the 9th interna-
tional conference on Service-Oriented Computing,
ICSOC’11, Springer-Verlag, Berlin, Heidelberg,
2011, pp. 359-373. doi:10.1007/978-3-642-
25535-9_24

Inzinger, C., Nastic, S., Sehic, S., Vogler, M., Li,
F., & Dustdar, S. (2014) Madcat – a methodology
for architecture and deployment of cloud appli-
cation topologies, 8th International Symposium
on Service-Oriented System Engineering, IEEE,
2014.

Konstantinou, I., Tsoumakos, D., Mytilinis, I., &
Koziris, N. (2013) DBalancer: distributed load
balancing for NoSQL data-stores. In Proceed-
ings of the 2013 international conference on
Management of data (pp. 1037-1040). ACM.
doi:10.1145/2463676.2465232

http://dx.doi.org/10.1145/2593793.2593798
http://dx.doi.org/10.1007/978-3-642-45005-1_62
http://dx.doi.org/10.1109/CCGrid.2013.42
http://dx.doi.org/10.1109/CCGrid.2013.42
http://dx.doi.org/10.1007/978-3-642-45005-1_31
http://dx.doi.org/10.1007/978-3-662-45391-9_19
http://dx.doi.org/10.1007/978-3-662-45391-9_19
http://dx.doi.org/10.1145/2602458.2611455
http://dx.doi.org/10.1145/2491411.2494579
http://dx.doi.org/10.1007/978-3-642-25535-9_24
http://dx.doi.org/10.1007/978-3-642-25535-9_24
http://dx.doi.org/10.1145/2463676.2465232

251

On Controlling Elasticity of Cloud Applications in CELAR

Kouki, Y., & Ledoux, T. CSLA: a Language for
improving Cloud SLA Management, Proceedings
of the International Conference on Cloud Comput-
ing and Services Science, Porto, Portugal, 2012,
pp. 586-591.

Kranas, P., Anagnostopoulos, V., Menychtas, A.,
& Varvarigou, T. (2012) ElaaS: An Innovative
Elasticity as a Service Framework for Dynamic
Management across the Cloud Stack Layers, Sixth
International Conference on Complex, Intelligent
and Software Intensive Systems (CISIS), 2012, pp.
1042 -1049. doi:10.1109/CISIS.2012.117

Moldovan, D., Copil, G., Truong, H.-L., & Dust-
dar, S. (2013) MELA: Monitoring and Analyzing
Elasticity of Cloud Services, 5’th International
Conference on Cloud Computing, CloudCom.
Bristol, UK, 2-5 December, 2013

Naskos, A., Stachtiari, E., Gounaris, A., Katsaros,
P., Tsoumakos, D., Konstantinou, I., Sioutas, S.
(2014) Cloud elasticity using probabilistic model
checking, CoRR abs/1405.4699

OASIS. Topology and Orchestration Specification
for Cloud Applications (TOSCA), (2013) http://
docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/
TOSCA-v1.0-cs01.html

Satzger, B., Hummer, W., Inzinger, C., Leitner, P., &
Dustdar, S. (2013). Winds of Change: From Vendor
Lock-In to the Meta Cloud. IEEE Internet Com-
puting, 17(1), 69–73. doi:10.1109/MIC.2013.19

Serrano, D., Bouchenak, S., Kouki, Y., Ledoux,
T., Lejeune, J., Sopena, J., . . . Sens, P. (2013) To-
wards QoS-Oriented SLA Guarantees for Online
Cloud Services, 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2013, vol., no., pp.50,57, 13-16 May
2013, doi:10.1109/CCGrid.2013.66

Sharma, U., Shenoy, P., Sahu, S., & Shaikh, A.
A Cost-Aware Elasticity Provisioning System for
the Cloud, 2011 31st International Conference on
Distributed Computing Systems (ICDCS), 2011,
pp. 559 - 570. doi:. 59 doi:10.1109/ICDCS.2011

Simjanoska, M., Ristov, S., Velkoski, G., &
Gusev, M. (2013) Scaling the performance and
cost while scaling the load and resources in
the cloud, 2013 36th International Convention
on Information & Communication Technology
Electronics & Microelectronics (MIPRO), vol.,
no., pp.151,156, 20-24 May 2013

Sofokleous, C., Loulloudes, N., Trihinas, D.,
Pallis, G., & Dikaiakos, M. (2014) c-Eclipse: An
Open-Source Management Framework for Cloud
Applications, EuroPar 2014, Porto, Portugal 2014

Tai, S., Leitner, P., & Dustdar, S. Design by
Units: Abstractions for Human and Compute
Resources for Elastic Systems, IEEE Internet
Computing 16 (4) (2012) 84-88. doi:http://doi.
ieeecomputersociety.org/10.1109/MIC.2012.81

Trihinas, D., Pallis, G., & Dikaiakos, M. D.
(2014a) JCatascopia: Monitoring Elastically
Adaptive Applications in the Cloud, in 14th
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2014. doi:10.1109/
CCGrid.2014.41

Truong, H.-L., Dustdar, S., Copil, G., Gambi,
A., Hummer, W., Le, D.-H., & Moldovan, D.
CoMoT – A Platform-as-a-Service for Elasticity
in the Cloud IEEE International Workshop on the
Future of PaaS, IEEE International Conference
on Cloud Engineering (IC2E 2014), Boston, Mas-
sachusetts, USA, 10-14 March 2014 doi:10.1109/
IC2E.2014.44

http://dx.doi.org/10.1109/CISIS.2012.117
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://dx.doi.org/10.1109/MIC.2013.19
http://dx.doi.org/10.1109/CCGrid.2013.66
http://dx.doi.org/10.1109/ICDCS.2011
http://doi.ieeecomputersociety.org/10.1109/MIC.2012.81
http://doi.ieeecomputersociety.org/10.1109/MIC.2012.81
http://dx.doi.org/10.1109/CCGrid.2014.41
http://dx.doi.org/10.1109/CCGrid.2014.41
http://dx.doi.org/10.1109/IC2E.2014.44
http://dx.doi.org/10.1109/IC2E.2014.44

252

On Controlling Elasticity of Cloud Applications in CELAR

Tsoumakos, D., Konstantinou, I., Boumpouka,
C., Sioutas, S., & Koziris, N., Automated, Elastic
Resource Provisioning for NoSQL Clusters Using
TIRAMOLA, (2013) 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid
Computing, pp. 34-41, 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and
Grid Computing, 2013

KEY TERMS AND DEFINITIONS

c-Eclipse: Tool enabling users to describe, de-
ploy and monitor their application. It is published
as an Eclipse extension with the name CAMF
(Cloud Application Management Framework) –
http://eclipse.org/camf. More details are available
in Sofokleous et al. (2014).

Elasticity Boundary: The upper and lower
bound over a set of metrics, within which the user
elasticity requirements are fulfilled.

Elasticity Control: Management of the ap-
plication using the application capabilities (i.e.,
available actions) for fulfilling elasticity require-
ments under varying workload.

Elasticity in Cloud Computing: The property
of adapting virtual resources used and application
components configurations to varying workloads
while fulfilling user requirements.

Elasticity Pathway: Defines a relationship
between the metrics captured in the elasticity
space, indicating how the elasticity of the service
evolved in time.

Elasticity Requirements: User requirements
which reference application-specific metrics,
driving the application elasticity.

Elasticity Space: The monitored values of all
runtime metrics having a user-defined elasticity
boundary, and thus believed to offer a good indi-
cator over the elasticity of the service.

MELA: An elasticity monitoring and analysis
tool (http://tuwiendsg.github.io/MELA/), offering
functionality for logically structuring monitoring
information and providing elasticity analytics
over historical monitoring data, to be used by
elasticity controllers. More details are available
in Moldovan et al. (2013).

SYBL: A domain specific language (http://
tuwiendsg.github.io/rSYBL) enabling the speci-
fication of three types of elasticity requirements:
monitoring, constraints and strategies requirements.
More details are available in Copil et al. (2013a).

http://eclipse.org/camf
http://tuwiendsg.github.io/MELA/
http://tuwiendsg.github.io/rSYBL
http://tuwiendsg.github.io/rSYBL

