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Abstract—While there has been a lot of effort in recent years in
optimising Big Data systems like Apache Spark and Hadoop, the
all-to-all transfer of data between a MapReduce computation
step, i.e., the shuffle data mechanism between cluster nodes
remains always a serious bottleneck. In this work, we present
Cherry, an open-source distributed task-aware Caching sHuffle
sErvice for seRveRless analYtics. Our thorough experiments on
a cloud testbed using realistic and synthetic workloads showcase
that Cherry can achieve an almost 23% to 39% reduction in
completion of the reduce stage with small shuffle block sizes, a
10% reduction in execution time on real workloads, while it can
efficiently handle Spark execution failures with a constant task
time re-computation overhead compared to existing approaches.

Index Terms—Big Data Analytics Frameworks, Distributed
Systems, Cloud Computing, Serverless Architecture

I. INTRODUCTION

Large scale data processing and analytics frameworks, either
as on-premises or as fully managed solutions like Apache
Spark [1], Hadoop MapReduce [2] Flink [3], Presto [4] or
Google’s Cloud DataFlow [5], have emerged as the de facto
standard for companies in the last decade, since vast sizes
of data are generated and required to be processed. These
frameworks are utilized in data-intensive circumstances, of-
fering a performant, distributed and scalable solution that can
be seamlessly adapted in cloud-based environments.

The aforementioned systems’ architecture is heavily influ-
enced by the MapReduce paradigm: they all offer a fully-
distributed data parallel computation engine where the entire
execution is split into a pipeline of multiple stages and each
stage is split into small computation units (i.e., “tasks”) which
are assigned to data “chunks” by a centralized scheduler. In the
case where intermediate data either between stages or between
tasks of the same stage need to be stored and exchanged, all
frameworks employ an internal data addressing and exchange
mechanism that deals with data partitioning, shuffling and/or
sorting [6]–[10] to handle intermediate task state. The efficient
intermediate state handling is of paramount importance for the
entire system performance and all engines try to address it in
an optimal manner.

One way to deal with intermediate state (i.e., shuffle data) is
to dissagregate it from the compute infrastructure by introduc-
ing an external “Shuffle Service” that offers the intermediate

state management through a separate infrastructure [11]–[17].
This approach has a dual benefit: on one hand it entirely
removes state from the computation pipeline rendering it com-
pletely “stateless”, thus allowing a de-facto stateful workload
to be seamlessly executed in a serverless manner, and on the
other hand it allows for targeted optimizations both at state
management infrastructure and system implementation.

One of the most prominent distributed processing frame-
works, namely Apache Spark, which bases its computation
in the notion of “RDDs” also follows the generic MapRe-
duce computation pattern. A Spark cluster currently executes
workloads by initiating an External Shuffle Service (ESS) [6]
on each worker node, that is required to run continuously
and constantly maintain state. The ESS functions as a proxy
through which both node-local and node-remote executors can
fetch the needed intermediate shuffle blocks when they are
assigned a reduce task at a reduce stage. The main problem is
that if a specific node crashes, all the intermediate data stored
are lost and a part of the job lineage has to be re-executed.
Even a whole node deallocation is prohibitive due to upcoming
data loss. Another noteworthy drawback is that ESS is not well
suited to containerized environments, like Kubernetes [18] or
YARN [19], where processes are required to be isolated and
stateless, since, although there are some solutions, there is no
serverless behavior and containers need to be constantly up.

Furthermore, in a shuffle read phase where reduce tasks
try to fetch intermediate data that are not locally located, the
disk I/O procedure can be a major obstacle and can delay
Spark workloads significantly due to the limited read/write
throughput that HDDs set. More specifically, this constraint is
of great importance when Spark executors are reading shuffle
blocks of small sizes and IOPS are restricted, causing the
significant degradation of workload execution time.

In this work we present Cherry1, a distributed shuffle service
that offers the following primary features:

• The introduction of a remote disaggregated storage en-
gine that stores intermediate shuffle data between stages,
making the execution of large-scale analytics workloads
completely stateless. This mechanism provides fault tol-
erance since there is no data lost upon node or worker

1code available at https://github.com/nikoshet/spark-cherry-shuffle-service
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failures and state is disaggregated, offering seamless
scaling of operations and making the execution of Spark
workers ephemeral.

• An implementation of a look-ahead caching policy on
the remote storage side that is task-aware and aims
at improving shuffle blocks fetch time, avoiding I/O
bottlenecks. The suggested caching policy that Cherry
provides has a significant performance improvement on
workload executions where enormous sizes of shuffle data
are required to be fetched by reduce workers.

• Cherry follows a modular architecture to facilitate easy
framework integration with existing systems while it is
currently seamlessly integrated with Apache Spark in a
pluggable way, enhances its capabilities, and requires
zero code changes and modifications to the existing
Spark workloads. Moreover, it utilizes Kubernetes as
a container orchestration manager, for automating the
management, deployment and scaling of containerized
Spark components.

II. BACKGROUND AND MOTIVATION

The aim of this section is to give motivation and present
the background for Cherry. Subsection II-A discusses the
procedure of intermediate shuffle files in Spark. Subsections
II-B, II-C and II-D present the main problems that can be
found in the existing implementation of Spark when executing
big data workloads.

A. Existing Approach in Spark Shuffle Data Management

The shuffle operation where intermediate data are being
temporarily stored and later fetched exists in several map-
reduce like frameworks that are used in data analytics work-
loads. Several services that offer this functionality have been
implemented [3], [6]–[10]. We selected Apache Spark to
integrate Cherry with, although as we discuss in Section VII
we argue that Cherry can be easily integrated with other
MapReduce-inspired frameworks, since they follow the same
architectural principles which we consider in our modular
design.

In the Spark computation engine, the DAGScheduler, which
is located in the Spark Driver (the user program’s entry to
the Spark execution “world”, see right side of Figure 1), is
responsible for creating a DAG (Directed Acyclic Graph) of
the computation, and splits a job in stages based on where
the intermediate data partitioning (i.e., shuffle) operation is
required to take place among the Spark executors over the
cluster network, and each stage in separate tasks, according to
the available job parallelization. The workers take on a task
that has been assigned to them, and initiate the executors that
will carry the necessary computations. The data are divided in
partitions accordingly.

In a Spark DAG, there are two types of data dependencies
that describe the tasks, namely narrow and wide (Section 4
of [1]). The partition of the child RDD that is assigned on a
task and is dependent on at most one parent RDD, consists
a narrow dependency. Common transformations are map and
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Fig. 1. DAG: A visual representation of RDDs and the operations being
appplied on them for a Spark job.

filter, there is no data shuffling required over the network, and
pipelining is feasible. Accordingly, when the partition of the
parent RDD is relied on by many child RDDs, this creates
a wide dependency. Typical transformations are reduceByKey
and join. The tasks that require to read intermediate shuffle
data are named reduce tasks, while the tasks that create data
or read existing data as input are map tasks.

On wide dependencies, the shuffle data (i.e., intermediate
data) need to be transferred around different nodes, a common
phase in the MapReduce paradigm. The shuffle data that are
generated after each map task, are block files that include
sorted data per reduce partition, as well as index files that
include offsets and lengths of these blocks. The map executor,
after processing its respective partition of an RDD that is
responsible for, creates the shuffle block data and index files
in an explicit format. Reduce tasks, firstly, are required to
remotely fetch their respective shuffle data, if the latter are
not available locally, in order to proceed with an assigned
computation. In Figure 1 we illustrate a DAG of a Spark job
from the procedure of data loading from the storage engine
until the final result is sent to the Spark Driver.

Spark has two solutions for dealing with intermediate data.
Firstly, Spark executors that are assigned a reduce task get
informed from the Driver about the nodes where the required
shuffle data are stored. Thereafter, they can directly fetch the
data from the executors that run on these nodes and serve those
files. Another solution that Spark offers is the use of the ESS.
A Spark cluster can execute a workload by initiating an ESS on
each Worker node. It is vital for the ESS to run continuously
and constantly maintain intermediate state. Both node-local
and node-remote executors can retrieve the respective shuffle
data when they are assigned a reduce task by the Spark Driver.
The shuffle operation is a procedure that occurs widely in
Spark analytics jobs that process TBs or PBs of data, and
thus, we believe that it is worth improving its performance.

B. Disk I/O Performance on Intermediate Data

The default External Shuffle Service of Spark fetches blocks
from disks, a process that is subject to great I/O overhead and
limited read/write throughput of HDDs because of random file
seeks. Each shuffle file that is created after a map task, consists
of a certain number of blocks, i.e., partitions. This number is
specified by the number of tasks on the next stage of the
Spark job. In addition, each block of data will be required
only one time for a specific reduce task, but a shuffle file
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will be requested by all reduce tasks. To put it differently, a
wide-dependency stage with M tasks that requires shuffling
will create M shuffle files on the map side, and if N tasks
exist on the reduce side, MxN connections will be created
due to MxN fetched shuffle blocks.

The aforementioned challenge that occurs in Spark work-
loads takes place especially when the shuffle intermediate data
that are required to be fetched over the network are small
in size, and thus, the I/O bottleneck occurs and degrades the
performance of Spark applications in large scale. At LinkedIn,
the average shuffle block size of its production Spark clusters
is only a few KBs [11]. A solution would be to use less tasks
per stage, and hence, bigger shuffle block sizes. However,
this case does not depict the real cloud environments where
the clusters consist of hundreds of separate nodes and, thus,
making the use of small shuffle file sizes inevitable. More
specifically, the size of shuffle blocks depends on the data set
and cluster size, and can end up small throughout a complex
long-running workload. When it comes to the selection of
the storage type that will hold the occurring shuffle data of
any Spark workload execution, although SSDs provide better
I/O performance than HDDs, they are more expensive. For
example, AWS prices a GB of SSD 4 to 5 times higher than
a GB of HDD per hour [20].

C. Fault Tolerance of Spark Workloads

Another noteworthy downside occurs with both vanilla
Spark and Spark with ESS. More specifically, Spark tries
to achieve fault tolerance by persisting shuffle files on disk
instead of memory in case a Spark executor fails, and requiring
a shuffle service to be running continuously. Nevertheless,
this mechanism does not include the possibility of a crash
of a specific node from the Spark cluster, since all the
intermediate data that were stored at the latter will be lost. As
a consequence, a major part of a lineage has to be inevitably
re-executed, and a shuffle re-computation is really expensive.
In cloud environments, deallocation of whole nodes or Virtual
Machines within a cluster are a common phenomenon for
maintenance or upgrade of hardware. However, this scenario
is prohibitive for the current Spark implementation due to
upcoming data loss. Additionally, the enforcement of con-
tinuous uptime of the shuffle services has the impact of the
unnecessary allocation of compute resources even when there
are no executors running in a specific node.

D. Isolation and Serverless Execution

Finally, another problem that needs to be highlighted is that
the whole Spark architecture, and more specifically ESS, is
not adapted to containerized environments, like Kubernetes
or YARN, where processes are required to be isolated and
stateless. Furthermore, the Spark Workers that run on the same
node have access to its other’s shuffle service, violating any
isolation prerequisites or policies between components that
may be a mandatory feature in a cloud cluster. In addition,
there is a wide interest in disaggregated cluster deployments in
the cloud, where the compute engine is located remotely from
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storage engine, and workloads can run in a serverless manner
seamlessly, without having any intermediate state. The same
requirement is for containerized environments, where contain-
ers should be started or terminated without the danger of losing
any state or intermediate data. The current implementation of
Spark with Kubernetes does not complete this requirement,
since the ESS of each Spark Worker that is executed in a
single container stores any intermediate state and needs to be
constantly up. Consequently, it is a single point of failure.
Thus, there is no fault tolerance and serverless behavior in
existing available solutions.

III. SYSTEM ARCHITECTURE OVERVIEW

In this Section we present Cherry, a distributed shuffle
service for Spark, that is implemented with the aim of ad-
dressing the aforementioned challenges and, thus, improve the
execution time of Spark analytics workloads in large scale.
Cherry is an open-source project that is built on top of Apache
Spark and its main topology is illustrated in Figure 2. Although
our suggested service for the shuffle operation is Spark-
specific, we believe that this architecture and mechanisms can
be ported on similar systems, as we analyze in Section VII.

Our proposed shuffle service can be integrated seamlessly
with Spark, without requiring any modifications to existing
Spark workloads (i.e., existing client code). Cherry uses
Kubernetes as a cluster management tool. Kubernetes offers
great flexibility, as it can easily allocate and deallocate nodes
from the Kubernetes cluster, deploy containers and receive
heartbeats, as well as achieve isolation between the Spark
components. Each module of our system is deployed in a
separate Kubernetes (i.e., K8s) Pod to achieve isolation. More
specifically, we decided to deploy the Cherry Pods in separate
nodes in order to store any intermediate shuffle data and
state of the Spark workloads in a disaggregated manner.
Furthermore, there are specific nodes where the Spark Worker
Pods with one executor each are running, based on user
configurations and available resources. On a separate node,
the Spark Master and Spark Driver pods are deployed.

Another component that is implemented and is running
on the Master node is the Metadata Service. Its main role
is to keep track of the alive Cherry Pods that are part of
the Spark cluster. More specifically, when the Cherry shuffle
service Pods are initiated, they firstly get registered on the



123

Metadata Service, and the latter stores their network infor-
mation. In addition, when the Spark executors are initiated
by the Spark Worker Pods, they request from the Metadata
Service the list of the aforementioned Pods in order to retrieve
the available locations to push and fetch their respective
produced intermediate blocks. Finally, the Cherry Pods send
frequently heartbeats to the Metadata Service, since the latter
needs to keep track of these and know if a failure occurs.
The intercommunication between the Spark components is
implemented through the RPC communication protocol.

IV. IMPLEMENTATION

This section analyzes in great detail the core mechanisms
of Cherry. We illustrate CHERRY’s detailed orchestration and
data movement processes in Figure 3, with a more specific
description subsequently. With light blue we depict the existing
pipeline of Spark. With light red (steps 2, 4, 5) we represent
the additions that we implemented so as to integrate Cherry
into Spark.

• In step 2, the Spark executor, after completing its assigned
task computations, pushes the shuffle data and shuffle
index files to one of the available Cherry Pods based on
a round-robin pattern, and the latter stores them in its
local disk.

• In step 4, the Spark Driver sends the required details
of the upcoming task launches (i.e., blocks that will be
requested by the next reduce computation “wave”) to the
Cherry shuffle services so as to decouple it.

• In step 5, each Cherry Pod processes the acquired knowl-
edge so as to proactively bring the shuffle data that will
be requested from each upcoming task.

A. Pushing Shuffle Files

We decided to follow a disaggregated approach to imple-
ment the distributed Cherry shuffle services, so as to maintain
the intermediate data and state of any running Spark workloads
away from the Spark workers. This feature transforms the
Spark workloads into fault tolerant executions, since, if a node
where workers are running crashes, no shuffle data will be lost,
and hence, any re-computation of the DAG will be avoided.
Furthermore, this mechanism of maintaining a shuffle storage
remotely allows the Spark Worker Pods to run seamlessly in a
stateless manner. Furthermore, the flexibility that Kubernetes
offers in deploying, managing and removing these Spark
components with preconfigured allocated resourses, as well
as increasing and decreasing the number of these instances
that are being executed at any point in time, makes the Spark
framework a completely serverless analytics engine.

The Spark Worker Pods obtain the list of available Cherry
shuffle services at the initiation of a Spark job from the Meta-
data Service, since the Cherry Pods are already registered to
that. In order for the latter to end up having an approximately
equal amount of intermediate data, the Spark executors push
their shuffle files in a round-robin pattern to the Cherry Pods.
When an executor is initialized from the Spark worker, it
registers with all the available Cherry shuffle services in the

cluster, in a similar manner as it takes place with the ESS
of Spark. The details acquired by the Cherry Pods from the
executors are their IP and Port, as well as their local directories
that the latter will use to store their shuffle files.

When a map stage initiates, the Spark Driver schedules the
map tasks on selected executors (step 1, Figure 3), based on the
available resources of the Spark Workers. When an executor
completes the computation of the map task, it produces a
shuffle data file alongside a shuffle index file that stores locally,
and then pushes them to the Cherry Pod that has been defined
by the round-robin mechanism via particular RPC messages
(step 2, Figure 3). When this process terminates, the mapper
notifies the Driver about the completion of its task (step 3,
Figure 3). Cherry persists the shuffle files locally by cloning
the file path names of the executors, which are known from
when the registration of the latter took place. This technique
makes straightforward the retrieval of the requested blocks to
be fetched later on by reducer executors. We observed through
evaluation and measurements that the time that is required to
push shuffle data from mappers to the Cherry services does
not add any supplementary overhead.

The MapStatus component of Spark has a crucial role
for matching the created shuffle files of map tasks with
their location, since the reducers will need to consume this
information and trace their location. More specifically, it is the
result that is returned by a map executor to the DAGScheduler
of the Spark Driver after its task completion, and includes
the address of the Cherry service that the shuffle files are
maintained alongside the sizes of outputs per reducer. When
a reducer executor is initiated subsequently, it will receive
the updated MapStatus instance of the location of the shuffle
files that are required for its assigned execution by the Spark
Driver. In essence, the MapStatus is a data structure that holds
information about the location of the intermediate shuffle files,
where “map” tasks write to and “reduce” tasks read from.

B. Look-Ahead Task-Aware Caching Policy

In Spark’s architecture, the all-to-all communication and
message exchange over the cluster network can not be avoided.
Furthermore, a huge number of random file seeks is required
in the shuffle operation between stages when small sizes of
intermediate shuffle data are fetched by the reducer executors
in shuffle heavy workloads. This phenomenon has a major
impact on the system performance, since the latter greatly
degrades due to the limited random I/O throughput of HDDs
that is a severe obstacle and causes a major slowdown. Thus,
concerning the challenge of the disk I/O degradation of the
performance of the system on these workloads, we decided to
create a policy that is task-aware.

Caching shuffle blocks instead of shuffle files. We firstly
opted to cache in Cherry’s memory the whole shuffle file every
time that it would be requested. However, out-of-memory
errors would occur, since, on large-scale workloads with TBs
or PBs of data each shuffle file is large in size and we could
not proactively cache many intermediate files. In addition, each
block would be required as many times as the partitions that
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it contains for each reducer. Consequently, many additions
and removals of the same shuffle data file in cache would
occur causing a lot of random evictions due to restricted
available memory resources and, thus, adding overhead to
the performance of Cherry. Thus, we ended up aggressively
caching only the required blocks of the shuffle data files per
Spark task, according to the MapStatus component.

In Figure 4, a typical reduce stage of a Spark job that
consists of 7 tasks is illustrated. Using this as an example, we
outline Cherry’s task-aware caching policy. At the moment
T0, Cherry will have already acquired and processed the
appropriate information from the Spark Driver about the first
task of the executor 4, and will have cached the blocks that
the latter will require to fetch. Cherry will evict each block
that will successfully get fetched. At the moment T1, Cherry
will be serving cached shuffle blocks to the executor 2 for its
second task . Finally, at T2, Cherry will only have in memory
the blocks that were not fetched because they were located
locally in the executors. Note that at any specific moment in
time (vertical lines in Figure 4), only the blocks of the active
reducers that are currently fetching data (i.e., red rectangles)
will be stored at Cherry, thus limiting the maximum amount of
required cache memory irrespective of the entire dataset size.

The DAGScheduler process of the Spark Driver is respon-
sible for managing and orchestrating the task assignment to
Spark executors and broadcasts all the appropriate details to
them. The Spark executors of a cluster take on a task in

’waves’ accomplishing the maximum parallelization possible,
if there is no data skew. Consequently, the adjustment that was
implemented on the DAGScheduler is explained subsequently.
At the phase of the reduce task creation, the Spark Driver
predefines the exact task execution order. At this point Cherry
consumes this knowledge (step 4, Figure 3), and can then
easily discover the exact block IDs that will be requested
beforehand (i.e, look-ahead). By acquiring this specific data,
the latter is capable of aggressively caching only the needed
data partitions of each shuffle file on task-level by buffering
them in memory (step 5, Figure 3), and have them ready to
be fetched by the reducers.

Implementing the caching policy. A reduce task is ini-
tiated by the Spark Driver (step 6, Figure 3) and proceeds
on remotely fetching the necessary shuffle partitions before
starting any computation (step 7, Figure 3). For each cached
shuffle block that is fetched, Cherry can discard it, since it
will not be requested again, in order to avoid cache overflow.
Then, it can simply fill the memory with the next upcoming
blocks according to expected tasks required to be executed.
If the available memory resources get limited, FIFO eviction
of shuffle blocks takes place, if necessary. The executors that
complete their reduce tasks, notify the Spark Driver that their
task is completed (step 8, Figure 3).

In order to find and proactively store in cache the shuffle
partitions of each upcoming task we need to acquire specific
information from the Spark Driver. The Spark Driver is
responsible for bookkeeping the information of mapping each
map index to its respective location in a MapStatus array for
each stage. The MapStatus array of a parent stage is complete
after the latter is finished. At this moment, it will include the
map output locations of shuffle blocks in an efficient byte
format ready to be sent to the reduce tasks of the child stage.
Each Spark Worker acquires once per stage the MapStatus
array of the shuffle that the running stage is dependent on.
Additionally, each executor that is assigned a task receives a
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message that contains the description of the assigned task to
decompose and process.

After the DAGScheduler computes the DAG of stages for
a job and the sequence of the tasks, it submits them to the
TaskScheduler. Subsequently, we collect the shuffle Ids that
this stage is dependent on and its stage Id, and we serialize the
MapStatus arrays for its parent stages. Then, we send an RPC
message asynchronously to the endpoint of each Cherry Pod
with this information. The Spark Driver, then, continues to task
assignments on executors. Before each and every launch of a
new task in a Spark job, it sends some information relative
to this task to all available Cherry endpoints. Each Cherry
continues on processing this information and, consequently,
on caching the upcoming shuffle blocks that will be requested
shortly for faster access.

This procedure is described more thoroughly in Algorithm
1. The functionality of finding the mappings of each shuffle
block ID is similar to vanilla Spark with small changes. Thus,
Cherry processes the data and returns an iterator of the shuffle
block IDs and corresponding shuffle block sizes requested.
Each Cherry Pod stores an ID for every shuffle block that it
receives from the Spark executors, that includes the Cherry’s
IP and Port and the executor Id that pushed each block. Hence,
we then filter the iterator to keep only the requested blocks that
are stored locally on each Cherry. Later, the filtered iterator
of blocks is added in a queue. From this queue we iteratively
fetch the objects and discover each shuffle index and data file.
Its length and offset are retrieved from its respective shuffle
index file. Finally, we cache each shuffle block.

The data structure that we proactively store the shuffle
blocks is a LinkedHashMap, since it offers selection of number
of buckets and FIFO eviction by default. Each key is a unique
string that includes the path of the shuffle data file in the local
disk, the length and the offset requested. There will be no key
collisions since each partition will be requested only once. The
messages that are exchanged when the procedure of fetching
shuffle block data takes place are the same with vanilla Spark.
Additionally, if a shuffle block has not been cached in time
when requested, it is served with the way that native Spark
works. The shuffle blocks that were cached but not fetched
because they were located locally in the executors that would
require them, get evicted at the end of the Spark workload, so
as to free up memory resources for new jobs. Also, if a reducer
crashes after its respective shuffle block has been evicted from
Cherry’s cache, it simply gets re-cached in order to be fetched
from the new reducer, so the execution continues normally.

C. Efficient Memory Usage and Low Cache Miss Rate.

With Cherry, the memory resources required are low, since
only a portion of tasks from a stage is being executed at
each moment in time, since the available executors in a Spark
cluster are usually less than the number of these tasks. We
wanted to benchmark if there are many cache misses when
trying to locate shuffle blocks, in order to serve the latter to
executors, based on the size of available memory. Our bench-
mark included an execution of a shuffle synthetic workload

Algorithm 1: Caching Shuffle Blocks
taskDesc: description info for each task that is
launched

stageId: stage Id of the launching task
mapStatuses: array of MapStatus instances that keeps
mappings from map index to output locations for
each partition of a stage

shuffleId: Id of the shuffle that a task depends on
blocksIter: iterator of blocks to be fetched for a task
q: queue to store blocks before processing their data
cache: cache to store shuffle blocks

1 begin
2 blocksIter = ConvertMapStatuses

(shuffleId, stageId,mapStatuses, taskDesc)
3 blocksIter = Filter(blocksIter)
4 q ← {}
5 for all block in blocksIter do
6 q ← q ∪ block

7 for i← 1 . . . len(q) do
8 blockData = GetBlockInfo(q(blocki))
9 blockKey = GetUniqueKey(blockKey)

10 blockV alue = ManagedBuffer(blockData)
11 cache.put(blockKey, blockV alue)

12 end

of 40GB with 10KB shuffle block size, 10 executors and 10
Cherry Pods. We also examined using different percentages
of total available cache relative to the shuffle data volume.
Through our experiments we concluded that the cache misses
are below 1% for all test cases, even if all shuffle data could
presumably fit in memory. This happens because only a part
of the shuffle blocks required is being fetched at a time, and
Cherry optimally leverages any acquired information from the
Spark Driver for a few upcoming reduce tasks by caching only
these shuffle blocks and maintaining its memory footprint low.
Thus, Cherry does not require a lot of memory resources to
perform greatly.

D. Fault Tolerance.

In large-scale systems in the cloud the node crashes is a
pretty common phenomenon. Accordingly, we believe that in
a Spark job there is a high chance of loss of a Spark Worker
along with its local state. Cherry’s mechanism of pushing and
storing remotely any ephemeral shuffle data from executors
provides fault tolerance in Spark workloads. More specifically,
Cherry leverages this feature and allows Spark to be executed
as a serverless framework, since in case of Worker node
failures or deallocations, no shuffle state will be lost.

Additionally, our implementation offers resilience even in
case of failures of the Cherry Pods. More specifically, the
Metadata Service is responsible for keeping track of the alive
Cherry services in a cluster. In case it stops acquiring heartbeat
messages from a Cherry Pod, it immediately informs the Spark
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Workers. Thus, on upcoming map tasks the executors push
their shuffle intermediate data to the rest of the available
Cherry Pods. Also, on an upcoming reduce task, we keep both
the Cherry location as well as the map executor location in
case of native Spark operation of each shuffle partition in order
to facilitate every upcoming reduce executor. The reducers will
(i) firstly examine if the respective Cherry Pod is alive, and
if not, they will (ii) fetch the intermediate data directly from
the respective Spark Worker, i.e, Cherry is being bypassed and
Spark defaults to the native way of shuffle data access. This
is possible since the Spark Workers temporarily keep their
produced shuffle blocks.

V. EVALUATION

In this section, we present the results of our evaluations for
Cherry. Through different types of benchmarks we showcase
that Cherry can reduce the I/O latencies by proactively caching
the shuffle blocks on task-level and, thus, improve the perfor-
mance of Spark workloads, while offering fault tolerance via
its serverless architecture and having low resource footprint.

A. Evaluation Setup

We have evaluated Cherry on synthetic and realistic bench-
marks. Our evaluation setup consists of 11 physical nodes,
each of which has 1 Quad-Core E5405 Intel Xeon® CPU
@ 2.00GHz and 8GB RAM, and are connected with a 10
Gbps Ethernet link. Each Spark Worker Pod allocates 1 CPU
core and 2GB RAM and run one executor, and are completely
stateless since only soft state is stored temporarily and shuffle
intermediate data are maintained remotely with from the
Cherry Pods. Each Cherry Pod has 1 CPU core and 2GB
RAM available. The Cherry and Spark Worker pods utilize
HDDs as a permanent storage. Additionally, the Spark Master,
Spark Driver and Metadata Service Pods allocate 1 CPU core
and 1GB RAM each. One physical node is dedicated for the
execution of the Spark Master, Spark Driver and Metadata
Service Pods, while five are dedicated of the Spark Workers
and five for the Cherry shuffle services. We believe that a
fair comparison of Spark with our implementation is the same
number of External Shuffle Services versus Cherry shuffle
services. Thus, we decided to run 10 Spark Worker Pods and
10 Cherry Pods for all our experiments. Additionally, since
both Spark with its ESS as well as vanilla Spark perform
similarly, we will mainly compare our implementation with
Spark with its ESS, and use Vanilla Spark only for our
synthetic shuffle workload.

B. Synthetic Workload Evaluations

We created a synthetic workload and emphasize on the shuf-
fle operation of Spark. The benchmark consists of a map and
a reduce stage of a shuffle heavy synthetic workload similar to
[11]. With this benchmark we can compare the performance
of CHERRY against Spark using ESS and evaluate them on
the reduce stage time, fault tolerance, scalability and resource
consumption.

TABLE I
EXPERIMENT CONFIGURATIONS. EACH ROW SHOWS THE TOTAL SIZE

OF THE SYNTHETIC DATASET, THE NUMBER OF MAP OR REDUCE
TASKS, AND THE SIZE OF EACH BLOCK.

Size # M/ # R tasks Block size

1 50 GB 400 312.5 KB
2 50 GB 2000 12.5 KB
3 50 GB 4000 3.125 KB

3.125KB 12.5KB 312.5KB
Block Size

100

120

140

160

180

200

220

240

Re
du

ce
 S

ta
ge

 T
im

e 
(s

ec
)

Cherry
Spark w/ ESS
Vanilla Spark
Cherry w/o Cache

Fig. 5. Experiment results of our benchmark with synthetic workload. Smaller
block sizes affect severely the I/O performance of Spark with ESS. On the
other hand, Cherry achieves a better overall performance on the completion
of the reduce stage.

1) Completion Time: The optimized performance of Cherry
can be depicted on the shuffle phase where reduce tasks require
to fetch intermediate shuffle data. Therefore, we monitored the
total reduce stage time of our Spark workload. The map stage
completion time is the same for all options since there is no
optimization there and the time spent on the process of pushing
shuffle data on the Cherry Pods is insignificant. We decided
to test our benchmark on different number of tasks per stage
and block size, and used the same number of map and reduce
tasks on each stage. The number of map tasks equivalents to
the number of shuffle files created, while the number of reduce
tasks is the same with the number of blocks per shuffle file.
Table I shows the experiment configurations.

Figure 5 shows our evaluation results when we compare
our optimized shuffle service against Spark with ESS, Vanilla
Spark, and Cherry without caching. On small block sizes of
3.125KB, the Disk I/O bottleneck is obvious and degrades
the performance of the workload execution with Spark. On
the contrary, Cherry manages to overcome this problem by
utilizing its look-ahead caching policy on each task and have
its requested shuffle block in memory before the fetching
operation, since any I/O will take place beforehand and not in
the critical moment of shuffle block fetching. Cherry without
caching has a similar performance as Vanilla Spark, but can
leverage its features on analytics workloads, such as fault
tolerance and disaggregation.

Cherry achieves an almost 23% reduction in completion
of the reduce stage time with 3.125KB shuffle block size
against Spark with ESS, and an almost 39% reduction against
Vanilla Spark. More specifically, Spark with ESS needs 196
seconds for the completion of the reduce stage that includes
reading the intermediate data with a 3.125KB shuffle block
size, Vanilla Spark requires 248 seconds, while our system
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needs only 152 seconds. As the block size increases for the
other 2 experiments, the performance of the 4 implementations
improve similarly. Thus, Cherry offers a great gain in the
reduce phase when it comes to reading small shuffle block
sizes.

2) Fault Tolerance in Spark workloads.: Our architecture
offers fault tolerance for Spark workloads, since all interme-
diate data are stored remotely and, thus, each Spark workload
turns into a serverless job where the execution of Spark Work-
ers is ephemeral. We estimate that the approximate additional
time that is required on a specific stage of a Spark job without
Cherry is given by (1). In this respect, TSpark is the additional
time needed, p is the percentage of the completed tasks in the
stage, t is the total number of tasks of the current stage, c is the
completion time for a task, e is the total number of executors
in the Spark cluster and l is the number of lost executors
when a Spark Worker crashes. With Cherry, the additional re-
computation overhead is constant, and equal to the completion
time of the tasks that were running at the failure time, which
is c (i.e., TCherry = c).

TSpark =
ptl

e(e− l)
∗ c (1)

In order to showcase this feature we made the following
experiment. We run our shuffle synthetic workload and created
20GB with 1000 mappers/reducers and a block size of 20KB.
Furthermore, we killed a Spark Worker Pod when different
percentages of the entire map stage have been completed, and
compared the additional required re-computation time as well
as the cloud resource utilization costs for the re-computation
period for the tasks of which the shuffle data were lost in the
vanilla Spark vs Cherry. Figure 6 illustrates the results of our
experiment, where the solid line with triangles and the left
y-axis depicts the extra time whereas the dashed line with X-
spots and the right y-axis depicts the extra cost of native Spark
compared to Cherry respectively.

Regarding execution time, Cherry’s stateless architecture re-
quires only the re-execution of the task that was running when
the failure occurred, achieving a minimal constant overhead
of around c=25 seconds in our experiment as baseline. On the
contrary, with vanilla Spark, all the tasks that were computed
by the killed executors by the time that the failure occurred
have to be re-executed. For instance, in the case where a Spark
Worker Pod failed at 80% of the map stage, Spark required
9X more time compared to using Cherry (rightmost triangle).

When it comes to re-computation costs, using the prices of
[21], with 10 Spark Workers and 10 Cherry Pods running on
an c1.medium EC2 instance each, we computed the total costs
with native Spark vs Cherry as baseline, based on our previous
time measurements. Similar to the time case, for instance, in
the case where a Spark Worker Pod failed at 80% of the
map stage, Spark was almost 5X more expensive compared
to Cherry (rightmost X spot).

It is depicted that according to different values of the
parameters on (1), there will be divergent additional overhead.
For example, in one of our cases with p=40%, t=1000, c=25
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Fig. 6. Additional Vanilla Spark map stage completion time (left y-axis) and
resource cost (right y-axis) vs Cherry for various % of map stage completions
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Fig. 7. CPU usage per Cherry Pod and total execution time while varying
the number of them in the cluster.

seconds, e=10 and l=1, the additional time is TSpark=111.1
seconds, which is 4.5X more compared to the baseline. An-
other theoretical example is as follows: for p=75%, t=4000,
c=500 seconds, e=20 and l=2, with Cherry we will need
only TCherry=500 seconds, while with (1) that results in
TSpark=8333.3 seconds, which is 16.6X more additional time.
Therefore, Cherry’s disaggregated architecture and serverless
manner of execution of Spark workloads achieves great fault
tolerance regarding Spark in real production environments
with minimal additional overheads.

3) Scalability and Resource Efficiency: Cherry’s architec-
ture enables its seamless scalability in a Spark cluster. More-
over, is has a low resource usage, both on CPU and memory
end. To illustrate that, we run our synthetic workload with
different number of Cherry shuffle services available within
the cluster and 10 Spark Worker Pods, and monitored the
CPU usage of each Cherry Pod, when the shuffle block fetch
operation of the reduce stage takes place , as well as the total
execution time of the workload. Figure 7 shows the experiment
results. As the number of Cherry Pods is increased, the latter
uses less amount of a CPU core and the total completion
time is reduced drastically. This happens since the amount of
requests from executors that have to be handled per Cherry in a
certain time frame is decreased, and Cherry serves the shuffle
blocks faster. Additionally, when the cluster has 10 Cherry
shuffle services, each one uses about 20% of a CPU core.
We, also, monitored the average CPU utilization of the Spark
Workers with vanilla Spark and measured that they need about
35% of a CPU core. This is because the Worker’s executor has
to fetches its local shuffle data for its respective assigned tasks,
as well as its ESS has to respond to requests and serve the
shuffle data accordingly.
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Fig. 9. Spark Performance with Cherry on skewed data vs Vanilla Spark.

As far as memory consumption is concerned, we measured
how cache is utilized in all Cherry services for shuffling 50GB
of data. Figure 8 shows how cache utilization changes through
time, compared to the normalized shuffle blocks that are
fetched by executors in the workload. Since Cherry caches and
evicts immediately the blocks that are fetched from the Spark
executors, we can see that the cache consumption increases
slowly, compared to the intermediate data that are served,
and ends up at about 18% of the shuffle data fetched. This
slow increase is due to the blocks that are cached but are
not fetched, since they are located locally in their respective
executor. The percentage of these data depends on the number
of Spark workers and Cherry services in a Spark cluster. Also,
through our measurements, we found out that only 10% of
the total shuffled data at most remains in the total cache of
all Cherry Pods after a job completion. All of these shuffle
blocks are evicted at the end of of the Spark job to retrieve
the maximum available memory for upcoming workloads.

4) Data Skews: Data skews and task stragglers can severely
impact the performance and completion time of jobs in large-
scale analytics workloads. The process of dealing with these
is of vital importance, and there is recent work that emphasize
on that [22], [23]. Although this area is not our main focus in
this work, we wanted to showcase how Cherry performs and
copes with skewed data in a Spark job.

In order to examine this challenging aspect, we created
a synthetic workload that requires 20GB of data shuffling
with 10KB shuffle block size and allows the tuning of the
percentage of the data skewness. Consequently, we executed
it in on our aforementioned Spark cluster. Figure 9 shows our
results. We can see that Cherry’s distributed architecture and
caching policy achieves relatively faster completion time of
the reduce stage time. More specifically, Cherry has from 2%
to 8% better performance, with the best score being on 80%
skewed data. Thus, we believe that on large-scale workloads
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Fig. 10. Execution results of TPS-DS queries on Spark and Cherry.

Cherry’s features can improve the data shuffle operation and
reduce the job completion time, even when there are great data
skews.

C. Real Workload Evaluation

We further continue on evaluating Cherry on a realistic
TPC-DS benchmark workload [24] against Spark with ESS.
This is a decision support benchmark that models a general
decision support system of a retail product supplier and
includes a wide variety of SQL queries, such as ad hoc,
reporting and iterative queries. For our evaluation, we use the
same hardware resources and number of Pods in our cluster as
used in our synthetic workloads. Additionally, we generated
TPC-DS data with a scale factor of 100, which corresponds
to all its respective tables adding up to a total input size of
100GB data, and stored them in HDFS.

Figure 10 illustrates the completion time of the total exe-
cution of the selected TPC-DS queries on Spark with ESS vs
Spark with Cherry. Both executed queries, Query 16 and Query
94, are general report type queries that combine different tables
and include shuffle-heavy operations. To ensure a realistic
execution on a typical multi-node setup as described in [11],
we selected a high number of partitions for the input data
so as to assure that we will have small shuffle block average
size, below some KBs, throughout the workload, since we
can’t explicitly determine the size of intermediate data in a
complex job later in the DAG because it depends on the
dataset size, data cardinality/selectivity, job transformations
etc. For Q16, Cherry manages to reduce its completion time
from 364 seconds to 324 seconds, which is 11% completion
time reduction. Moreover, for Q94, Spark with ESS requires
8.5% more time to complete than Spark with Cherry.

VI. RELATED WORK

Shuffle Operation Optimization: Data analytics systems
such as MapReduce and Spark have been studied both by
industry and academia. Magnet [11] and Riffle [12] modified
the Spark ESS and tried to solve the efficiency issues created
by disk I/O bottlenecks that occur when fetching of small sizes
of shuffle data is required by achieving sequential disk reads
of bigger sized shuffle chunks. Magnet suggested pushing
shuffle files from Spark executors to the shuffle services
and merging them per shuffle partition. With Riffle, there is
a shuffle service running on each physical node and tries
efficient block merging by pulling the intermediate data files
from map tasks and executing their merging. However, there
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is no fault tolerance provided in case of node crashes since
merged blocks are located on compute nodes.

Apache Crail [13] achieves high performance by using
specific storage resources and networking and can be used
to execute data analytics workloads in a disaggregated archi-
tecture.Nevertheless, their hardware is specialized and there is
no addressing in the challenges of small intermediate blocks
in shuffle operations. Another research work [25] focuses on
allowing compute and storage engine disaggregation as well
as on addressing the existing Spark issue of fault tolerance
by creating a remote manager that keeps all intermediate data
from workloads to its file system. However, no optimization
on the operation of reducers reading shuffle data is mentioned.

Cosco [14] focuses on aggregating shuffle intermediate
blocks with buffers and uses an existing remote file system
for storing these files. Sailfish [15] and iShuffle [16] aim at
optimizing the shuffle phase operation on Hadoop MapReduce
workloads. Sailfish extends an external filesystem and aggre-
gates intermediate shuffle blocks of jobs and, thus, decreases
the number of block fetches by reducers. However, it compro-
mises fault tolerance due to chance of corrupted aggregation
files. Both Cosco and Sailfish works rely on external storage
systems to operate as shuffle services. iShuffle pushes mapper
shuffle data to the reducers but does not enhance shuffle
performance. Another relative work presents Flint [17], which
is a rewrite of the execution engine of Spark and exploits AWS
Lambda [26] but is focused on only the pySpark interface.

Serverless Architecture: When it comes to research and
literature, there is plenty of public work relative to serverless
platforms and architecture. Pocket [27] is an elastic data
storage that can maintain ephemeral data. It is built on top of
Apache Crail [13] and AWS Lambda is used as a serverless
compute engine. However, they do not address the challenge
of storage node failures and argue that fault tolerance is
not mandatory. Another recent work is Shredder [28], which
examines multi-tenant isolation on serverless environments
and pushes functions into storage. However, it is executed in
a single node and does not address any fault-tolerance feature.

Cloudburst [29] is a stateful FaaS platform that is built on
top of Anna Key-Value Storage [30], [31] and can efficiently
leverage its integrated caching capabilities in order to process
key-value storage objects with minimum latency. Cloudburst
runtime can also autoscale independently from Anna and
achieves disaggregation. Nevertheless, there are no guarantees
relative to failures on the compute tier, and the whole DAG
of a job will be re-executed. FaaSFS [32] is a file system
for stateless cloud functions that utilizes a familiar POSIX
API, reaching performance close to what a local file system
achieves, but is not benchmarked on data analytics workloads.

VII. DISCUSSION

The original MapReduce framework and all of its descen-
dants employ an intermediate shuffling mechanism that, at its
simplest form, utilizes the local filesystem of the participating
executors. All shuffling approaches, either local or remote,
require a persistent storage and an addressing mechanism to

store and retrieve intermediate data: storing is done by utilizing
POSIX read/write system calls in the local case or RPC
Put/Get calls in the remote case and addressing is done through
a combination of executor IP address and filename (reduce
bucket), in order to uniquely identify the specific intermediate
data that needs to be fetched.

These characteristics (i.e., shuffle storage and addressing)
are being taken into consideration by Cherry throughout its
design, and a lean approach with well-defined external system
interactions is followed, to facilitate its generic applicability:
In Figure 3 we notice that Cherry interacts with the external
big data processing system only in its Put/Get and task info
creation steps, thus requiring system specific code to be
implemented only there. In fact, code changes to the big
data processing system are required only in the respective
steps: Cherry requires Spark to adapt only its Put (step 2)
call, and task info call (step 4), whereas the adaptation is
minimal with around of 500 lines for the configuration of
API messages between Cherry and Spark (i.e., Cherry code
inside Spark). On the other hand, Cherry required around of
500 lines of Spark-specific code in its implementation for
processing the aforementioned messages, as well as caching
the required blocks (step 5) and responding to Get requests of
Spark executors (step 7).

Generic caching policies (for instance, LRU, NFU, etc.)
are employed when the data access pattern is not known
beforehand, something that we overcome in our case: by
exploiting the scheduler task info we know both the exact
blocks that are going to be requested and the time that this is
going to happen. Therefore, the proposed look-ahead block-
based caching policy comes as a natural optimization that
Cherry can achieve by utilizing its two distinguishing charac-
teristics, namely the external shuffle storage service (through
disaggregation) and the exact data access pattern knowledge.
Regarding the caching policy generic applicability, since all
those frameworks employ a task scheduler that assigns data to
executors, we can easily extend Cherry by consuming similar
system-specific scheduling info.

VIII. CONCLUSION

We present Cherry, a distributed shuffle service for large-
scale analytics workloads that leverages a look-ahead caching
policy on task-level that efficiently improves the I/O bottle-
necks on the shuffle operation of small shuffle block sizes.
Cherry is disaggregated from the Spark components and
can store all intermediate data from workloads seamlessly,
transforming Spark into a pure serverless analytics engine. It
also achieves fault tolerance in case of node failures and has
low resource footprint. Through our experiments, we show
that Cherry overcomes the challenges of shuffling in Spark
and improves the required time of shuffle fetching in analytics
jobs.
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