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Abstract—Elastic resource allocation is a desirable feature
of cloud environments, and one of the main reasons for their
widespread adoption. Resource elasticity allows for adaptive
and real-time infrastructure scaling that can follow workload
fluctuations in a cost-effective manner without sacrificing perfor-
mance. Promising Machine Learning (ML) approaches employ
Reinforcement Learning (RL) where an agent interacts with
the cloud environment by employing actions, observing the
reward of their outcome and modifying its strategy accordingly.
Nevertheless, one of the main problems of RL in this setup is
that to acquire a sufficient initial knowledge of the environment,
the agent needs to perform numerous time-consuming and
performance-degrading interactions with the cloud. In this work
we design and implement RBS-CQL, a Deep-RL Kubernetes
agent system to monitor and automatically scale the containers
of a NoSQL application according to incoming workload. We
combine training optimization techniques from contemporary
literature as well as offline RL algorithms to reduce the training
time. We provide empirical results that show that RBS-CQL
achieves systematic improvement of more than 10% compared
to its online equivalent for a given number of experiences and
that it is able to extract improved decision-making policies even
from data of lower quality.

Index Terms—Cassandra, K8s, NoSQL, containers

I. INTRODUCTION

Cloud native applications are one of the main focus points

of enterprise software development. In 2021 about 30% of

new generated digital workload is deployed on cloud native

platforms and it is estimated that this figure can climb up

to more than 90% by 2025 [1]. The dynamic and scalable

nature of cloud native applications is a promising alternative to

on-premises development because it alleviates an organization

from the costs and risk of maintaining costly infrastructure to

support its software operations. Moreover, scaling is limited,

time consuming and even impossible in certain scenarios.

Containerization enhances the potential of cloud native ap-

plications because it offers a lightweight alternative to virtual

machines that need to boot an OS instance to run. Using con-

tainerization, the components of an application can run with a

significantly smaller hardware and time overhead. Capitalizing

on these properties, cloud applications can be organized in

components that execute atomic functions of the application,

rather then running monolithic application instances. This

software development paradigm is called microservices and

it offers increased flexibility in terms of scaling because each

component can be scaled independently.

As containerized applications become more complex and

more distinct components are added to the deployment, mon-

itoring, scaling and connecting the components of the ap-

plication becomes a tedious task [2]. The rapid increase in

DevOps complexity of containerized applications limited their

adoption and created the need for orchestration mechanisms.

Kubernetes (K8s)1 is a software solution that solves the

orchestration problem effectively, a fact that resulted in its

increased adoption by enterprises since its release in 2014.

Kubernetes also offers resource-based autoscaling features

such as the Horizontal Pod Autoscaler (HPA) [3]. This auto-

scaling feature uses CPU and memory utilization thresholds

to estimate the optimal number of instances to run. Most

cloud services vendors offer threshold based autoscalers that

increase the number of application instances as the incoming

traffic increases (a brief experimental comparison of different

industrial autoscalers can be found here [4]). These methods

are oversimplistic and can only provide limited performance

guarantees while requiring specific domain knowledge (see

Section 8 of [5], where rule-based resource estimation is one

out of the 6 different categories).

An alternative approach to threshold based autoscaling, is to

utilize algorithms from the domain of RL (section 8.5.1 in [5]

or a complete survey in [6]). RL formalizes the idea of an agent

that learns effective decision-making policies by performing

trial and error interactions with a system. Deep Reinforcement

Learning (Deep RL, firstly introduced by DeepMind [7])

enhances the capabilities of RL by utilizing neural networks

as high order non-linear function approximators. In that way,

problems that are described by more complex state spaces

and could not be solved by original RL algorithms, are now

solvable. However, there is a key limitation to applying Deep

RL to the resource auto-scaling problem. In typical Deep

RL problems mentioned in literature, the number of training

steps required to reach an optimal solution is in the order of

millions. In ordinary auto-scaling scenarios the time it takes

for an action to take effect is in the order of minutes until

the system completely stabilizes and all resources are fully

1https://kubernetes.io/
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functional, making the “scaling latency” a first-class citizen

in quantifying cloud elasticity [8]. Additionally, interacting

with the application in a random manner is in some cases

not desirable because it can cause disruptions or lead it to

destructive states [4]. Considering the above, it is evident

that in order to derive a feasible solution for the auto-scaling

problem the number of interactions with the system must be

reduced significantly or alternatively the information gain from

each interaction must be maximized.
In this work we create an agent that monitors a containerized

application and dynamically scales the deployed instances and

consequently the consumed computational resources. To de-

velop this agent, we create two neural networks that are trained

using online and offline Reinforcement learning algorithms.

There are two main challenges that need to be tackled by the

proposed solution.
a) The number of parameters needed to describe the system

state can increase arbitrarily, depending on the complexity of

the deployed application. Also, the parameters are not discrete.

This makes tabular applications of Reinforcement Learning

ineffective and consequently the utilization of a neural network

is justified.
b) The time between consecutive actions is in the order of

minutes. This limits the rate of data accumulation, meaning

that the model must extract as much information as possible

from available data points.
To address these challenges, we propose a model that

consists of two neural networks. The first model is trained

in an online manner, using the well-established Double Deep

Q Learning algorithm [9]. The second is trained with an offline

dataset using the Conservative Q Learning algorithm [10] (i.e.,

CQL), a state of the art Offline RL algorithm. The offline

dataset consists of the training experiences that are generated

by the online model during its training. Essentially, the offline

model receives the data generated by the policy of the online

agent and trains without further interacting with the system.

To decrease the time it takes to perform the scaling actions, we

deploy our application inside a distributed Kubernetes cluster

to leverage its automated scheduling features. The application

we chose to monitor is a Cassandra NoSQL cluster. The choice

of this application is based on the fact that its performance

depends on several parameters [11], a fact that highlights the

effectiveness of our model.
Our man contributions are the following:

• We identify, briefly analyze and bring into the wider

cloud elasticity context two state-of-the-art promising

approaches from the RL domain, namely Return Based

Scaling (i.e., RBS) and Conservative Q Learning (i.e.,

CQL) that can optimize learning with minimal interaction

with the environment.

• We present RBS-CQL, an elasticity agent system that

implements, employs and combines the previous tech-

niques to scale a cloud-native K8s workload consisting

of a Cassandra NoSQL cluster in a public cloud testbed.

• We test RBS-CQL at several checkpoints of the train-

ing and show that our models outperform more than

10% online training up to a certain size of dataset. We

also provide empirical results that indicate that from

the point onwards where online training outperforms

offline training, performance gains diminish dramatically

in comparison with the training steps required to achieve

this improvement.

The paper is structured as follows: Section II gives the reader

the necessary background regarding RL and NoSQL, Section

III describes the selected optimizations from the RL domain

and explains their fit for our case, Section IV presents a

detailed experimental evaluation of our approach whereas

Sections VI and VII conclude our work.

II. PRELIMINARIES

The aim of this section is to present a very brief background

regarding the system(s) tackled in this work and also the

theoretical foundations used to model the elasticity work.

Subsection II-A gives a brief overview of K8s and Kassandra.

Subsection II-B gives the necessary brief information regard-

ing reinforcement learning.

A. Containerization and NoSQL

Virtualization comes with a significant hardware overhead,

since every VM needs to have its dedicated kernel which

results in increased resource usage. Containers alleviate this

problem by providing a “lightweight” alternative for running

isolated applications, while sharing the same kernel of the host

Operating System (OS).

Containerized applications have significantly reduced boot-

ing times, since there is no need to boot an operating system.

This means that deploying and destroying containers on de-

mand, is much cheaper in terms of resources and elapsed time.

Kubernetes, initially launched in 2014 is a container scheduler

that runs on a cluster of physical machines.

K8s introduces the notion of “pods” when it comes to

resource scheduling. Pods are the smallest unit of computing

that can be deployed in the K8s ecosystem. A pod is a group

of containers that are always co-scheduled on the same node

and share the same computational resources, filesystem and

storage.

Cassandra [12] is a distributed open-source database man-

agement system. It is a NoSQL solution and was initially

developed by Facebook to support the Inbox Search feature

until 2010. A Cassandra cluster works with a Peer to Peer

(P2P) architecture, meaning that every node is connected to all

other nodes. Also, every node is aware of the data distribution

on all other nodes. As a result, every node is capable of serving

clients and perform all database operations offering scalability

and eliminating single points of failure.

K8ssandra2 is a K8s operator that packages an entire

Cassandra deployment (storage nodes, monitoring, API nodes,

etc.) into a cloud native offering. K8ssandra pods consist

of three containers. A Cassandra container that runs the

Cassandra image, a logger container that stores log information

2https://k8ssandra.io/
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about Cassandra operation within the pod and is useful for

troubleshooting and an init-container that handles configura-

tion settings as the pod is initialized.

B. Reinforcement Learning

The goal of RL is to maximize the overall rewards an

agent can gain by interacting with an environment. The

maximization infers the need for an optimality criterion.

More specifically, we must define how the agent evaluates

the rewards in order to modify its behavior. There are three

approaches that are most commonly used for this purpose:

• The finite-horizon model, where the agent is expected to

maximize the expected rewards for a finite number of

steps h: E[
∑h

t=0 rt] . This approach is suitable when the

agent can only perform a fixed number of steps in the

environment, for example in a game that ends after a

fixed number of turns. For this approach we can either

opt for a fixed or receding horizon. Fixed horizon means

that the agent does not have a stationary policy. On the

first step it chooses the h-step optimal action, on the

second step it chooses the (h-1)-step optional action and

so on. In the receding horizon case, the agent has a fixed

policy and it just alters the h number of forward steps it

will look to decide on an action. This approach can be

problematic since it limits the number of steps ahead the

agent must consider and this information is not always

known beforehand.

• Another approach is the average-reward model, in which

the agent is supposed to maximize the long-term average

reward: limh→∞E( 1
h

∑h
t=0 rt) . Again, this approach is

problematic because it does not distinguish between a

policy that prioritizes short term large rewards to and

agent that prioritizes long term larger rewards.

• To avoid these two problematic cases, an alternative form

of reward model is used the infinite-horizon discounted

model. The equation to maximize is (where 0 ≤ γ ≤ 1):

E(
∑→∞

t=0 γtrt) . In this case, the long-term rewards are

considered but they are discounted by a factor γ for each

additional step it takes to receive them. The discount

factor serves more than one purposes. First of all, it

is effectively setting a frame of effective rewards. The

smaller the discount factor is, the faster future rewards

diminish to zero and are not affecting the result. It also

conveniently ensures that the sum will converge to a finite

number given that the rewards are themselves a finite

number. This mathematical tractability is the dominant

reason this type of reward is has received the most

attention [13].

Markov Decision Process (MDP): Markov Models are

stochastic models created to describe non deterministic pro-

cesses [14]. Markov models are described by a number of

states and a transition probability between states. One of the

properties that make them widely adopted, is that they are

memoryless, meaning that the behavior of the system only

depends on the current state. If our problem can be trans-

formed into a Markov Model, then by observing the current

state we have sufficient information to decide on the next

states. An MDP is an extension of the Markov chain, where

actions are added to each state and rewards for executing these

actions. These processes are suitable to describe RL problems

because they are expressive enough to describe the process

of an agent taking deliberate actions and not only transition

to states stochastically and also receive rewards. Using these

models, we can calculate optimal policies for agents.
An MDP consists of the following:

• a set of states s ∈ S
• a set of actions α ∈ A
• a reward function R : S ×A → R

• a transition function T : S ×A× S → [0, 1]

Before discussing algorithms for finding MDP models, we

will first explore techniques for finding an optimal policy π∗,

given that we already have the MDP model available. We

call optimal value of a state, the expected infinite discounted

reward the agent will gain if it starts from this state and

executes the optimal policy: V ∗
(S) = maxE(

∑→∞
t=0 γtrt)

This optimal value is unique and is the solution to the Bellman
optimality equations [15]:

V ∗
(S) = max(R(s, α)) + γ

∑

s

T (s, α, s′)V ∗(s′)) (1)

π∗
(S) = argmax(R(s, α)) + γ

∑

s

T (s, α, s′)V ∗(s′)) (2)

The optimal values can be calculated using the value
iteration algorithm [14]. At every step of the algorithm, we

iterate over all states and all actions and calculate the next

estimation about function V. Then we update our next step

estimation as the max calculated value for each state. This

algorithm is shown to converge to the optimal policy [15].

There is no obvious termination criterion of the algorithm.

It has been proven however, that if the difference between

two successive value functions is less than ε then value of

the greedy policy differs from the optimal value by no more

than 2εγ
1−γ . This provides an effective stopping criterion for the

algorithm. By greedy policy we mean taking the max value

at each iteration as an update for the value function. It is

apparent that the policy can be arbitrarily close to the optimal,

depending on the value of ε we choose.
Learning an Optimal Policy: In the previous paragraph

when we started describing an MDP and how to calculate the

optimal value function of a model, we assumed that we already

had the model parameters available to us. This is not always

the case though. In many problems we do not have prior

knowledge of the model that describes the system the agent

interacts with. Moreover, even if we do have such knowledge,

it is not always desirable to provide this knowledge to the agent

because it inserts some form of bias based on our perception

of this system. It is preferable that the agent is able to learn

the dynamics of the system on its own and still be able to find

an optimal policy.
The agent interacts with the environment and observes

the states these actions lead to and the rewards it receives.
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This is the only means by which the agent can observe and

consequently gain information about the environment. There

are two approaches to reach an optimal policy [13]:

• Model Free Systems: Learn the action controller without

learning a model of the environment.

• Model Based Systems: Learn a model of the environment

and then derive the controller.

The question of which approach is better still remains a bone

of contention in the academic community. The only thing that

is certain is that both approaches have been used to provide

optimal solutions for different problems. For the scope of this

work, we will attempt to solve the proposed problem using

model free systems and specifically Q Learning.

Q Learning is a widely adopted method that has been able

to solve many RL problems due to the ease of implementation

compared to other methods. To understand Q Learning we

must define the function Q∗ as a function of states and actions.

Q represents the expected discounted reinforcement of taking

action α in state s and then continuing to make optimal options

of action for the successive states. Considering the above, V ∗
( s)

is the value of s assuming we perform the optimal action from

step one so essentially V ∗( s) = maxαQ
∗( s, α) . Using this

equation along with Equation 1 the Q function can be written

recursively as:

Q∗(s, α) = R(s, α) + γ
∑

s∈S

T (s, α, s′)maxa′Q∗(s′, α′)

Q∗(s, α) also provides us with the optimal policy π∗
(s) as

π∗
(s) = argmaxQ∗(s, α) using Equation 2 and substituting

Q for V. The recursive definition of Q and the fact that it

provides an explicit way of deciding on an action on each

step allows us to estimate Q values online and also use them

to define the optimal policy, by taking the maximum Q for the

current state at each step. The Q Learning rule is:

Q(s, α) = Q(s, α) + α(r + γmaxα′Q(s′, α′)−Q(s, α))

where 〈s, α, r, s′〉 is an experience tuple. It is proven that if

every action is executed an infinite number of times in each

state and α is decayed appropriately then the Q values will

converge with probability 1 to Q∗.

Deep Reinforcement Learning: RL algorithms have ex-

isted more than two decades in academic literature. Neverthe-

less, their applications were limited. The main problem is that

every reinforcement learning algorithm needs at some point

an approximator function to estimate the value function of

the policy distribution of the actions it performs. Explicitly

defining such a function is impossible and using simple

approximators, like linear ones, greatly impacts performance

and limits the scope of the problems it can be applied to. Deep

neural networks provided an effective non linear approximator

that is able to fit to very high dimensionality non-linear

functions given enough samples and time to converge. The

increase in attention neural networks have received since 2010

has also revitalized RL applications that leverage this new

powerful tool to learn the estimators they need.

Deep Q Learning (DQN): As we mentioned in the def-

inition of Q Learning, this algorithm attempts to find the

sequence of actions that maximize total discounted rewards

by trying to estimate the Q for any given pair of state-action

and then make greedy choices by opting for the action that

has the highest Q value every time. It is apparent, that the

better the estimation of the Q values, the closer the action

sequence to the optimal will be. Attempting to solve a problem

using the definition of Q Learning is inefficient, because

according to the original algorithm every sequence is evaluated

independently and no form of generalization can take place.

To enable generalization, a parameterized Q function is used

Q(s, α; θ) ≈ Q∗(s, α) where θ is a set of trainable parameters.

In deep Q Learning the approximator is a neural network that

attempts to estimate optimal Q values for all action sequences

using the same function.

DQN models are trained using tuples of 〈s, α, r, s′〉 (state,

action, reward, next state). The difference in implementation

compared to the original algorithm and other RL implemen-

tations is that the tuples are not used for training in the same

order as the agent observes them. In DQL a structure known

as replay memory is used. The replay memory is a fixed size

buffer that stores the N latest tuples observed by the agent.

At every step first an observation of the state is made. Then

an action is chosen based on the observed state. Finally, the

state that the action leads to is observed and the reward is

calculated. The new tuple is stored in the memory and then m

random tuples are chosen from the memory to train the agent.

The process is then repeated.

Using a replay memory instead of just using the samples

as they are received for training provides three important

advantages. The first is that this method of training leads

to more efficient sample utilization. Every sample is almost

certainly used more than once for weight updates. Combined

with the fact that neural networks demand small learning rates

to converge, it is very likely that using a training tuple only

once to update the network weight is not sufficient to gain

all the information possible from this training sample. This

method increased the chances that a tuple will be used more

than once so that more information can be extracted from the

sample. The second advantage is that this training technique

breaks the strong correlations between successive samples.

This is important because randomized samples reduce the

variance of the updates, which leads to faster convergence.

Additionally, learning on-policy is prone to get stuck in local

minima. The reason is that at every step the network makes

a choice based on its parameters and then trains based on the

choice it made. If the choice is locally optimal, the network

is going to repeat the choice and ignore other options that

potentially lead to greater overall reward [16].

Double Deep Q Learning (DDQN): The original Q Learn-

ing algorithm is known to overestimate the Q values of the

model. This phenomenon is not necessarily harmful for the

algorithm performance and the resulting policy. A common ex-

ploration technique called optimism in the face of uncertainty,

is based on this idea. Every unexplored Q value is assigned
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a high numeric value, so that the algorithm is incentivized

to sufficiently explore the state space before making greedy

locally optimal actions. Moreover, if the overestimation of the

values is uniform then the dynamics of the action preferences

are preserved, leading to the optimal policy. In this work

[9], however, it is claimed that in several applications of

DQN the overestimation is not uniform and it indeed harms

performance.

To alleviate the overestimation, the authors propose to

decouple the action selection from the action evaluation. The

two networks of the agent are called online and target network

accordingly. The online network is updated normally using the

training samples. The target network is a lagging copy of the

online network, meaning that every N steps, the parameters

of the online network are copied to the target network. The

greedy policy or action selection is evaluated using the online

network. Then the target network is used to estimate the Q

value of the state action pair and the weight update of the

online network is performed using this estimation. The Q

estimation rule for DDQN is shown below:

LDDQN = Rt+1 + γQ(St+1, argmaxαQ(St, α; θt); θ
′
t)

where θt are the parameters of the online network and θ′t the

parameters of the target network.

The frequency of synchronization between target and online

network is not specific and in reality, is a tunable hyperpa-

rameter. Small values degrade the model to a simple DQN

agent and introduce overestimation. Large values slow down

learning because the updated Q values are not known to

the evaluator for longer time-frames. According to state-of-

the-art implementations, it seems that a reasonable decision

is to synchronize the weights after every episode. DDQN

indeed solves the overestimation problem and leads to higher

performance in most tasks and for that reason DDQN has

become the default implementation for solving problems using

the Q Learning algorithm.

III. OPTIMIZING REINFORCEMENT LEARNING THROUGH

SCALING AND OFFLINE LEARNING

In this Section we present the proposed optimizations to

enhance the learning process in a typical RL-based elasticity

system. We take into account the practical problems that arise

in such a system, and we propose two different approaches

to alleviate them, namely Return Based Scaling and Offline

Learning.

A. Return Based Scaling (RBS)

Scaling issues in Reinforcement Learning models is a

tedious task but also a necessary one because when errors

scales vary across different stages of training, it can hinder or

obstruct the convergence of the model. Especially in model-

free algorithms, where the agent has to accurately estimate the

value function that describes the underlying dynamics of the

problem, scaling issues are even more severe.

There are various factors that can affect the error scales

during training and each one of them can be detrimental for the

model convergence. The most common is the reward function.

Every Q value is the discounted sum of the current and future

rewards the agent expects to accumulate. The greater the

variance of the rewards is, the greater the disparity of the Q

values can be during training. This can lead to error scales that

vary in many orders of magnitude due to the cumulative nature

of the Q values. Even if the reward function does not display

high variance, it is possible that during an update the estimated

and observed Q value vary greatly, leading to a high numeric

value of error. Using such a value for an update can distort

the weights convergence because neural networks are smooth

function approximators. This phenomenon is more likely to

happen during the early stages of training, where the agent

explores the state space and it possible that it had not acted

optimally around a specific part of the state space until that

point. It is also possible to happen when at some point in

the training the agent discovers new possibilities for higher

rewards that became available after the policy started to change

due to the training. Finally, the discount factor also greatly

affects the arithmetic values of Q values. Trying different

discount factors for the same problem may demand different

scaling of the rewards, adding to the struggles, reinforcement

learning practitioners face when they try to parameterize their

models.

To overcome the aforementioned problems, reinforcement

learning practitioners resorted to empirical solutions. These

solutions may be efficient depending on the dynamics of a

specific problem and the distribution of the reward function

but they are not widely applicable. Some examples are reward

clipping and reward or return normalization [9], [17]. These

methods can effectively address the scaling problem but they

are problematic because they hide certain aspects of the

dynamics of the problem, that are expressed by the variance in

the values of the reward function. As a result, these methods

can make it impossible for an agent to reach the optimal policy

due to the distortion introduced. Tom et al. [18] propose an

alternative approach, to the scaling problem that preserves

the dynamics of the problem while alleviating the numerical

fluctuations between updates of the Q values and consequently

the weights. They propose to apply the scaling directly in the

temporal difference, meaning the input of the loss function

of the neural network. The scaling factor is adaptive and is

updated during each training step. The scaling problem of

the updates is more noticeable during the early stages of the

training because as the model approaches convergence, errors

should approach 0 asymptotically. The derivation of the scaling

factor is δ = Rt+γV ′
t+1−Vt where Rt is the reward observed

at step t and Vt the estimated Q value of the model at step

t. To find an approximation of the scaling factor we must

estimate V [δ]. At the early stages of training, we can assume

that the rewards are independent from the Q values since

the agent performs random actions almost always. Using this

assumption, we can express V [δ] as:

17



V [δ] = V [R] + V [γ(V ′ − V )] + V [(1− γ)V ]

= V [R] + γ2V [V ′ − V ] + V [γ]E[(V ′ − V )2]+

(1− γ2)V [V ] + V [γ]E[V 2]

At every step Q values are updated with the rule Q = R+
γQ′ and Q values estimate the overall gain of the agent. It is

reasonable to substitute V for G and for the one step difference

G′ − G = R + (1 − γ)G. Also G =
∑

t γ
tRt, so E[G] ≈

(1γ)E[R]. Using these equations and substituting in V [δ] we

can write: V [δ] = V [R]+(1−γ)2V [G]+V [γ]E[G2]. The term

(1−γ)2V [G] can be neglected because it is dominated by the

other two. Also, when γ is constant or when the training is

continuous and not divided in episodes, the term V [γ]E[G2]
is also neglected leading to V [δ] = V [R]. The scaling factor

is σ where σ2 = V [δ]. The difference between this method is

that V [δ] is calculated online at every step of the training. The

authors also account for some edge cases that can occur during

training. The most notable is the case where batch training is

used and the variance of the rewards of the batch is greater than

the overall variance.To avoid detrimental updates the scaling

factor must be altered to σ2 = max(V [δ], V [δbatch])

B. Offline Reinforcement Learning (CQL)

Offline Reinforcement Learning is a lucrative research field

that has been drawing increasing attention over the latest years.

The reason is that in theory, offline reinforcement learning

can leverage the immense datasets that exist and effectively

train agents based on these static datasets without further

interaction. Currently, reinforcement learning is an active

learning process, where the agent performs an action observes

the results and then reiterates. This approach has limited

applicability because first of all the quantities of data that can

be generated are limited compared to offline training. State-of-

the-art models of machine learning owe a major part of their

success to the immense amounts of the training datasets they

are presented. Except for the dataset limitations, interactions

with the environment can be costly and/or catastrophic in

several applications such as robotics or medical applications.

For the reasons stated above, effectively applying offline

reinforcement learning is a key challenge for the adoption of

reinforcement learning in real-world environments.

The problem of most value based off-policy offline Rein-

forcement Learning methods is that they display poor perfor-

mance in reality. The main reasons of failure are over-fitting

and out-of-distribution actions (OOD). These problems usually

manifest themselves as erroneous overestimations of the value

function at certain states. More specifically, the problem lies

in the fact that the Bellman optimization algorithm [15] tries

to sample actions from the learned policy that is created as the

model is trained but the Q values can only be trained on values

sampled from the policy that generated the offline dataset.

Since the algorithm is created to use the learned policy, it often

leads to OOD actions. When these actions have erroneously

high values, they lead to overestimations. Typical offline

Reinforcement Learning applications mitigate this effect by

restraining the algorithm from opting for unobserved states.

These attempts however result in over-restrictive policies that

limit the performance of the agent during testing.

A promising recent approach that tackles the afforemen-

tioned problems is Conservative Q Learning (CQL) presented

in [10]. In our work we have integrated this approach to

our cloud elasticity agent. We now give a brief theoretical

explanation of the reasons why it can help in the learing

process.

The aim of CQL is to estimate the value function V π(s) of

a target policy π(s) given a static dataset D that is generated

by a behavior policy πβ(α | s). Ideally, the target policy is

identical to the optimal policy. To learn in a conservative

manner, an additional term is added to the minimization

equation alongside the standard Bellman objective that is used

in online Reinforcement Learning. The intuition behind this

additional term is that since the values of the dataset D are

generating by the behavior policy πβ(α | s), actions that are

more likely according to this policy to be overestimated and

so this additional term acts as a penalty for these actions. The

objective function of conservative Q- Learning is provided by

the equation:

Qk+1 = min
Q

α · (Es∼D,α∼μ(α|s)[Q(s, α)]−

Es∼D,α∼πβ(α|s)[Q(s, α)]) +
1

2
L

(3)

where L is the standard Bellman objective function and

μ(α | s) is the desired distribution action-states after training.

The authors that propose the solution prove that for μ = π
the resulting estimation of the value function and the Q

values satisfies the restriction V̂ π(s) < V π(s)∀s ∈ D,

meaning that every Q value that can be estimated using the

static dataset, is bounded by the actual value of the Value

function, so overestimation is eliminated. The constant α is

a hyperparameter of the optimization problem. In reality this

constant needs to be sufficiently big for a dataset of fixed size.

In other words, the larger the size of the dataset, the smaller

α can be. Asymptotically, for a large enough dataset α can

take very small numeric values and the objective function is

dominated by the Bellman objective term.

Observing Equation 3 we notice that the minimization

involves a priori knowledge of the distribution μ(α | s).
However, μ is a part of the training process and after a

sufficient number of training steps we want μ = π. Since

μ is a part of the optimization problem we can include a

maximization over μ in the conservative-learning term so that

at every iteration the objective function is

Qk+1 = min
Q

max
μ

α · (Es∼D,α∼μ(α|s)[Q(s, α)]−

Es∼D,α∼πβ(α|s)[Q(s, α)]) +
1

2
L+R(μ)

where R(μ) is a regularizer term. A reasonable choice of

R(μ) is the Kullback-Liebler divergence (KL). KL-divergence

DKL(P‖Q) is a type of statistical distance that expresses the
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additional surprise or uncertainty introduced because of our

choice to use as a model a distribution Q when the actual

distribution is P. In our case P = μ and Q is a prior distribution

of action-states. When the distribution of actions is almost

uniform at every state, then the maximization over μ results in

a soft-max of the Q-values at any given state and the objective

function is transformed to:

Qk+1 = min
Q

α · Es∼D(log
∑

α

exp(Q(s, α))−

Es∼D,α∼πβ(α|s)[Q(s, α)]) +
1

2
L

(4)

Transforming equation 4 to a Loss function that can be used

to calculate gradients for a neural network is straightforward:

L = α · Es∼D(log
∑

α

exp(Q(s, α))

− Es∼D,α∼πβ(α|s)[Q(s, α)]) +
1

2
L

At every step of the training we randomly pick a subset of

the dataset and calculate L and then update the parameters of

the network using the chosen optimizer, following [10].

IV. EVALUATION

In this section we describe the way we coordinated the

different components used to perform our experiments. We

also present a detailed experimental evaluation of RBS-CQL

managing a NoSQL cluster deployment in a public cloud

setup. We used a K8ssandra deployment that runs inside

a distributed Kubernetes cluster. The clients that generated

the traffic load ran an instance of the YCSB [19] service,

a typical workload generator for NoSQL database clusters,

and a remote script monitored the number and nature of the

generated requests. For the collection of metrics, we used a

Prometheus instance that was deployed inside the K8s cluster

as well. The VMs were hosted in the Okeanos [20] public

cloud environment.

A. Experiment Setup

The Kubernetes cluster consists of 10 VMs, one of them

acted as a Master Node and the rest as Worker Nodes. Each

of the worker nodes had 4GB of RAM, 30GB of storage

space and 2 virtual CPU cores. The master node had 8GB

of RAM, 30GB of storage space and 4 virtual CPU cores.

From the 30GB of available storage of every node, 15GB were

allocated as a virtual disk and provided to the Kubernetes

cluster as a Persistent Volume. Every worker node had an

instance of the Kubernetes local volume static provisioner

running on it. Its role is to manage the PersistentVolume

lifecycle for pre-allocated disks by detecting and creating PVs

for each local disk on the host, and cleaning up the disks when

released. Every K8ssandra node needs at least 2GB of RAM to

operate flawlessly. For this reason, only one K8ssandra node

could run at a time per worker node. The resource limits that

performed best in our setup were to use 2GB of RAM and 1

CPU core per K8ssandra node. We also allowed the nodes to

exceed RAM usage to a margin of 0.5GB. This allowed the

K8ssandra cluster to perform scaling operations even under

head traffic and high percentage of resource utilization. Finally,

we deployed 3 instances of Stargate nodes to coordinate

incoming requests.

The role of the client generating the queries against our

database was carried out by the YCSB framework. YCSB

[19] is a benchmark tool written in Java that can generate

traffic for several database systems. The workloads can be

configured in terms of target loads (in requests per second),

the number of operations to be executed, time limits of total

execution time and the percentage of reads and writes among

others. In essence, YCSB sets the arrival rate λ in queuing

theory terms. Throughout our experiments we observed that

λ = μ where μ defines the system’s service rate or the system’s

observed throughput (the message queue size was not altered).

To generate the traffic needed we created 4 additional VMs

with the YCSB tool installed in them. The generated traffic

was monitored by a remote script that sent commands to the

VMs to execute partitions of the total workload and ensured

that the total workload was evenly distributed among client

machines.

In our setup all of the monitoring was performed on the

server-side. The metrics were periodically scraped by the

Prometheus instance and stored in its database. Then the

script that executed the monitoring agent, performed PromQL

queries against the database over HTTP to collect the metrics.

After that the metrics were normalized and formatted as a

numpy array and finally provided as input to the decision-

making module.

B. Results

For the training of our models, in an approach similar to

[21], [22], we used 17 parameters to describe the state of the

cluster:

• The size of the cluster

• The average 98th percentile latency measured by the

stargate nodes

• The average 99th percentile latency measured by the

stargate nodes

• The average 999th percentile latency measured by the

stargate nodes

• The throughput or requests per second measured

• The throughput measured at the previous decision step

• The total free memory of the cluster as a percentage of

the total available memory

• The total cached memory of the cluster as a percentage

of the total available memory

• The average CPU utilization of the cluster

• The minimum CPU utilization of the cluster

• The maximum CPU utilization of the cluster

• The average CPU that is idle in the cluster

• The average CPU time spent waiting for IO

• The average IOPS in the cluster

• The average disk read throughput of the nodes in the

cluster
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• The average disk write throughput of the nodes in the

cluster

• The percentage of reads in the incoming load

All the metrics are scraped by Prometheus every 10 seconds

and the measurements are averaged over a 5 minutes interval.

The reward function used to evaluate every state is:

R = 0.01 ∗ throughput− (VMs−B)

where B is the minimum cluster size. Following the ob-

servations in [23], the selected reward function instructs the

RL agent to optimize the cluster throughput while keeping the

cluster size (and therefore the cloud cost) as small as possible

to accommodate the incoming workload traffic. The rationale

behind this approach is that the observed throughput in essence

consists of the respective “profit” of a cloud service (e.g., by

charging clients on a per-query basis) whereas the cluster size

consists of the respective service “cost”. Therefore, the goal

is to maximize profit while minimizing cost. In this work we

do not focus on the reward function selection. For a detailed

discussion on this matter please refer to [23].

Regarding the network architecture of the online agent, we

used a fully connected network with 2 hidden layers. The first

hidden consisted of 48 nodes and the second layer consisted

of 24 nodes. The replay memory buffer was set to store the

last 300 experiences and the weights were updated with a

learning rate of α = 0.001. The discount factor was set to

γ = 0.99. To avoid weight updates that could lead to the

divergence of the system, we used the return-based scaling

(RBS) technique described in the previous section to normalize

the loss at every update step according to the running variance

of the rewards of the past experiences. The training starts with

a replay memory of 300 random experiences. The agent then

performs 500 annealing steps, with epsilon decaying from 1

to 0.1 linearly over the course of the 500 steps. We preserve a

small epsilon value over the rest of the training to preserve the

potential of the agent to explore higher reward states at later

stages of the training. The batch size for the training after every

decision was set to 32 randomly sampled memories from the

replay buffer.

The agent at every step observes the current state of the

cluster and chooses between 3 actions: Increment the cluster

size by 1, decrement the cluster size by 1 or do nothing. In

the cases where the size of the cluster changed, the agent

periodically observed the state of the cluster as described

by the variable status.cassandraOperatorProgress. When the

value of this variable was set from “Updating” to “Ready”

the agent waited for 5 minutes and then collected the metrics

from Prometheus to perform the next action. When the cluster

remained unchanged, the agent waited for 2 minutes and then

collected the metrics to perform the next action. This fact

showcases the difficulty in creating an initial training set. In

order to collect, for instance 300 experiences for a small initial

training set the agent requires around 15 hours, whereas for

3300 experiences it requires around 165 hours or 7 days where

the cluster is stressed with the training load affecting its normal

operation (see Table I).

For the network architecture of the offline agent, we again

used a fully connected network with 2 hidden layers. Given

the fact that we had access to an offline dataset and training

can be performed in a matter of minutes or hours, we had

greater freedom to tune the hyperparameters of the model.

For every checkpoint that we compare our agents, we use a

different number of nodes for the hidden layers to optimize

the performance of the model. Also, the hyperparameter a of

the CQL loss function ranges from 5 for the smallest dataset

to 1 for the largest dataset.

Finally, we utilized an additional optimization that is de-

scribed in literature as initial value offset [18] Although

the effectiveness of this method is not proven theoretically,

empirical results show that in certain cases it speeds up

convergence dramatically. The intuition behind this method

is that the output layer of the algorithm in Deep Q Learning

tries to estimate the numeric value of the Q function for a pair

of state-action. When the nature of the reward function is such

that it is significantly offset from 0, then initializing the biases

of the output layer to 0 as per usual, can be problematic. The

reason is that the agent will spend a great amount of training

time to increment the biases to reach the order of magnitude of

the Q function, given that the Q values are discounted sums of

the observed reward values, before it can start to effectively

learn the dynamics of the problem. To overcome this delay

in learning we can initialize biases with an estimation of the

mean value of the overall gain of the agent E[G] based on

some initial statistics. Our experiments have shown that this

bias initialization indeed helps the training to take off sooner

than the zero initialization approach.

We now present the comparative performance of the online

(i.e., Double Deep Q-Learning DDQN) and our system (RBS-

CQL) at specific training checkpoints.

In Figures 1a and 1e we compare the two approaches using

a minimal initial dataset of 300 experiences. Observing the

behavior of the two models it is apparent that the RBS-CQL

agent can already extract some knowledge from the minimal

dataset of 300 observations about the dynamics of the problem

(Fig. 1a). On the contrary, the DDQN agent has only learned

that higher cluster sizes can potentially lead to higher rewards

(Fig. 1e).

Next, in Figures 1b, 1f, 1c and 1g we compare the perfor-

mance of the two models after the DDQN agent has completed

the annealing steps, meaning the part of the training that the

agent performs mainly exploratory actions. Again, in Figs. 1b

and 1c we can observe that RBS-CQL is able to scale the

cluster more drastically. On the other hand, The DDQN agent

is still biased toward higher cluster size states (Figs. 1f and

1g).

Increasing the size of the dataset from that point on-wards

has shown no significant improvement for RBS-CQL and as

a result we terminate the training at this point (see Figs 1d

and 1h). DDQN continues to improve as it interacts with the

environment but the progress slows down greatly.
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(a) RBS-CQL, minimal dataset (b) RBS-CQL, small dataset (c) RBS-CQL, medium dataset (d) RBS-CQL, final dataset

(e) DDQN, minimal dataset (f) DDQN, small dataset (g) DDQN, medium dataset (h) DDQN, final dataset

Fig. 1: Comparison of the behavior of the online DDQN vs offline RBS-CQL for different initial experience sizes.

(a) RBS-CQL, constant unseen dataset
(b) RBS-CQL, unseen sinusoidal loads of different apti-
tudes

Fig. 2: RBS-CQL generalization capabilities under unseen constant and sinusoidal loads

TABLE I: Performance comparison of RBS-CQL vs DDQN
regarding total reward with various initial experience sizes.

Dataset DDQN RBS-CQL Improvement
reward reward

Minimal (300 exp) 581.43 642.73 10.5%
Small (800 exp) 601.74 670.05 11.3%

Medium (1800 exp) 659.71 698.36 6.1%
Final (3300 exp) 690.42 714.62 3.5%

V. RELATED WORK

The most common way to deal with the issue of elastic-

ity is auto-scaling. Amazon’s auto-scaling [24] for instance

dynamically increases or decreases a user’s resources based

on thresholds applied on user cluster’s specific metrics. Mi-

crosoft’s Azure (Microsoft’s Azure) and Celar [25] use the

same technique. Yet, as shown in [22] these approaches are

difficult to calibrate and optimize.

Methods from the RL domain [6] are often used for

autoscaling, where multiple aspects are being tackled, from

determining the correct size and type of the scaling action

to solving scheduling decisions that determine the correct

placement of jobs to workers. Nevertheless, none of these ap-

proaches focus on the problem of maximizing the algorithm’s

efficacy with minimal interaction with the environment.

The authors of [26] use a dynamic programming algorithm

that tries to determine through a series of past experiences the

optimal behavior for the system’s nextstate. Markov Decision

Processes (MDPs) and Reinforcement learning algorithms

have been used in [23] to address issue, as well as an approach

involving wavelets for prediction of a cloud state and resource

provisioning. However, the efficiency of those approaches

decreases, as the number of possible states increases. The

input parameters of the system (metrics of the cluster) are

continuous variables; therefore the number of discrete states

can grow exponentially.

To manage this issue in [22] the authors propose an RL

approach combined with decision-trees algorithms, in order

to split the input parameters based on some split criteria. This

approach manages to generalize over the input and to train the

agent so that it can find out on its own which state parameters
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matter to the desired outcome and which not. Nevertheless,

this approach also struggles with large space of states and

also need a large dataset to show generalization capabilities.

The authors of [21] proposed a Deep Reinforcement Learn-

ing model to address the problem of elasticity in cloud native

environments. The model is able to converge to a solution and

provide increased rewards compared to previous approaches

that did not utilize neural network. The main issue still is the

fact that the number of training samples is significantly large.

The authors of [27] utilize Reinforcement learning algo-

rithms to address the problem of adaptive auto-scaling for

serverless applications. Their approach concerns the distri-

bution of available workload to application containers and

monitoring the performance of the system in terms of la-

tency and throughput based on the concurrent requests each

container has to serve. They then generate a policy using

Reinforcement Learning to perform optimal distribution of

workload. Their approach is similar to ours although it only

applies to serverless applications. However, the states are

described using only three parameters, a fact that makes the

exploration space much smaller and easier to converge to a

solution.

VI. DISCUSSION

Using a containerized version of the application enhanced

the training process because it allowed to accumulate an

increased number of diverse experiences in the same amount

of time compared to previous attempts that relied on VMs

setups. The process can be accelerated further if we opt

to compromise resource utilization, so more resources can

be dedicated for the scaling tasks rather than executing the

workloads. Nevertheless, our deployed application showed

high level of resilience and was able to perform scaling oper-

ations even under severe resource pressure. This is due to the

efficient scheduling algorithms of Kubernetes, that reorganize

the deployed resources to ensure minimum interruptions to the

deployed workloads.

The experiments with online Deep Reinforcement Learning

algorithms highlighted the practical challenges that occur

when applying these models to realistic scenarios. The most

important is the fact that these models need constant and

extensive interaction with the environment they monitor. This

means that in order to perform successful training, the sys-

tem must be configured meticulously, to avoid unexpected

behaviors due to the agent’s actions that may lead the system

towards destructive states. The second challenge is the limita-

tion in accumulated experiences. Typical Deep Reinforcement

Learning application require millions of experiences and this

may be unfeasible is realistic applications. Finally, due to the

limitation in experiences, performing hyperparameter tuning

is a very time consuming task.

The offline model we propose tackles all these challenges

effectively. First of all, since the problem is essentially trans-

formed to an unsupervised learning problem, we are able to

perform hyperparameter tuning to derive the optimal model for

the problem. Moreover, since the model is trained without any

interaction with its environment, it is much less probable that

after deployment it will lead the system to destructive states,

if the problem is defined correctly. The offline agent is able

to extract significantly more information from the provided

dataset, compared to the online agent. As a result, it is able to

converge to a solution much faster than the online equivalent.

Finally, we observe that at every checkpoint of the training,

the offline model is able to mitigate the bias of the online

agent towards higher cluster size states, a fact that supports the

claim that our agent is able to systematically derive a better

decision-making policy than the one provided by the dataset.

Although limited to certain cases, our offline agent showed

some capabilities of generalization over unseen workloads.

Extensive generalization with Deep Reinforcement Learning

still remains an unsolved issue. Nevertheless, these results

are encouraging for further experimentation, especially with

offline Reinforcement Learning techniques that tackle the

generalization problem directly.

VII. CONCLUSION

In this work we experiment with contemporary deep rein-

forcement learning techniques to enhance the capabilities of

an already powerful tool for containerized applications. We

present RBS-CQL, an agent implemented as a cloud autoscaler

that can effectively auto-scale complex applications in order

to maximize resource utilization without compromising perfor-

mance. Moreover, RBS-CQL is capable of discovering the dy-

namics of the monitored system even from very small datasets.

We have identified, theoretically examined and implemented

two different state-of-the art Deep-RL optimizations in the

cloud elasticity domain that a) optimize algorithm performance

in the case where experience information is hard to collect,

as in the case of cloud elasticity and b) minimize errors

during training, namely Conservative Q Learning and Return

Based Scaling. We compare our solution with existing DeepRL

techniques in a realistic cloud setting where the RL agents

scale a NoSQL cluster and we show that in cases of limited

initial knowledge it can offer a performance improvement of

more than 10%.
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