
Distributed Indexing of Web Scale Datasets for the Cloud∗

Ioannis Konstantinou, Evangelos Angelou, Dimitrios Tsoumakos and Nectarios Koziris
Computing Systems Laboratory

School of Electrical and Computer Engineering
National Technical University of Athens

{ikons, eangelou, dtsouma, nkoziris}@cslab.ece.ntua.gr

ABSTRACT
In this paper, we present a distributed architecture for index-
ing and serving large and diverse datasets. It incorporates
and extends the functionality of Hadoop, the open source
MapReduce framework, and of HBase, a distributed, sparse,
NoSQL database, to create a fully parallel indexing system.
Experiments with structured, semi-structured and unstruc-
tured data of various sizes demonstrate the flexibility, speed
and robustness of our implementation and contrast it with
similarly oriented projects. Our 11 node cluster prototype
managed to keep full-text indexing time of 150GB raw con-
tent in less than 3 hours, whereas the system’s response time
under sustained query load of more than 1000 queries/sec
was kept in the order of milliseconds.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems

General Terms
Design, Performance

Keywords
Cloud Computing, NoSQL, Hadoop, HBase, MapReduce.

1. INTRODUCTION
The cloud computing paradigm has been receiving an in-

creasing amount of attention from both the industry and
academia. On-demand and pay-as-you-go access to compu-
tational and storage resources that reside in distant data
centers is a very attractive business model, especially for
small to medium sized enterprises (SMEs) or start ups that
need a quick, cheap and scalable access to hardware and
software infrastructure. According to a recent survey1, more
than half of SMEs are going to use cloud computing services
this year, compared to a mere 22% last year.

Our era is marked by what is referred to as the “data ex-
plosion”: Increasing volumes of data that need to be stored,
indexed and queried for every company (such as e-mail and

∗This work was partly supported by the European Commis-
sion in terms of the GREDIA FP6 IST Project (FP6-34363).
1http://bit.ly/Cloud2010

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDAC ’10, April 26, 2010 Raleigh, NC, USA
Copyright 2010 ACM 978-1-60558-991-6/10/04 ...$10.00.

web logs, historical data, click streams, etc). Cheaper stor-
age and bandwidth enables the growth of publicly avail-
able datasets: sites like the Internet Archive offer access to
petabytes of content such as web pages, books, etc. Another
example is Amazon offering public datasets (almost) for free
through its cloud infrastructure2. Effective indexing is very
important to enable the dataset usability, but this is a very
difficult task for such data volumes: even Internet Archive
does not allow full text search in one of its most interesting
services, the WayBackMachine3 with a dataset of 4.5 PB.

The requirement to perform compute-intensive analytics
on (semi) structured bulk datasets has pushed sql-like cen-
tralized databases to their limits [3]. This fact, along with
the highly parallel nature of these tasks, has lead to the de-
velopment of horizontal scalable, distributed non-relational
data stores, called NoSQL databases [1]. Google’s Bigtable
[6], Amazon’s Dynamo [8], Facebook’s Cassandra [10], and
LinkedIn’s Voldermort [2] are a representative sample of
such systems. In favor of scalability and high availabil-
ity, NoSQL systems relax classic ACID guarantees made by
typical DBMS, allowing, for instance, only eventual consis-
tency. NoSQL systems serve a dual purpose: they can ef-
ficiently store and index arbitrarily big data sizes while en-
abling a large amount of concurrent user requests. NoSQL
systems are perfect candidates for cloud infrastructures, as
their shared nothing architecture enables them to scale by
simply acquiring more computational and storage resources
from a cloud vendor.

Our contribution: In this work, we present a distributed
processing platform suitable for indexing, storing and serv-
ing large amounts (in the orders of TB and more) of content
data under heavy request loads. Indexing rules of variable
granularity, relative to both type of data and user-input,
along with the raw content are processed by our framework.
The augmented information is extracted in the form of a
distributed index served to an arbitrarily large number of
concurrent users. In order to speed up indexing, the com-
pute and storage-intensive index creation and maintenance
leverages the innovative MapReduce framework. To achieve
low response times in high query load using commodity-
node clusters, user requests are served through an HBase
database. In this paper, we present an initial prototype of
the platform that aims to achieve the following goals:
Support of almost any type of data: Support for vari-
ous types of content, including unstructured (e.g., log en-
tries, HTML files, etc), semi-structured (XML files) and

2http://aws.amazon.com/publicdatasets
3http://www.archive.org/web/web.php

Raw Content

Index rules

Content

table

Index

table

Search

objects

Get

object
Client

API

Uploader

Map Reduce

Indexer

Map Reduce

Figure 1: System Architecture

structured data (sql databases).
Near real-time query response times: Query execution
times should be in the order of milliseconds, to enable users
to perform fast content searches. We are not considering“on
the fly” heavy analytical tasks to execute as user queries (as
Pig [13] and Hive [14] frameworks do), since these tasks are
not suitable for “live” searches, due to their long execution
time (from minutes to hours).
Scalability: This is a requirement both in terms of storage
space and concurrent user requests. The system must be
able to scale (preferably in an elastic way) by simply adjust-
ing the number of participating server nodes.
Ease of use: Users should be able to define simple rules
to declare the scope and type of the required index and
perform meaningful searches over the data (e.g., find con-
ferences whose title contains cloud and were held in Cali-

fornia).

2. ARCHITECTURE
Our system is built on top of Hadoop, an open source java

implementation of the MapReduce paradigm that has been
widely adopted by a large number of organizations world-
wide4. Hadoop consists of a distributed file system called
HDFS (a GFS [9] - like distributed file system) and a MapRe-
duce [7] executing framework on top of it. HDFS file meta-
data is being kept in a single node called the NameNode and
raw data is stored in many DataNodes. MapReduce con-
sists of a job scheduler called JobTracker which co-ordinates
many worker nodes called TaskTrackers. In a typical setup,
the NameNode acts as a JobTracker, and DataNodes are
also TaskTrackers.

As our NoSQL storage substrate we are using HBase,
which is an open source implementation of Google’s Bigtable
[6], since it is tightly coupled with Hadoop (it uses HDFS
as its storage backend and provides I/O hooks to Hadoop’s
MapReduce framework). An HBase table consists of a large
number of sorted rows indexed by a row key and columns
indexed by a column key (each row can have multiple dif-
ferent columns). Actual content is stored in HBase cells: an
HBase cell is defined by a combination of a row and a col-
umn key, in the same way an (x,y) value defines a point in a
2-dimensional space. The primary key of an HBase table is
the row key. HBase supports two basic lookup operations on
the row key: exact match and range scan. HBase consists
of a single master (HMaster) that keeps track of numerous
nodes that serve actual content called RegionServers.

Overview: In Figure 1, we present an overview of the
system components along with their interactions. The main
idea is the following: The raw content (in the form of large
XML files, HTML files, SQL database dumps, logfile direc-

4http://wiki.apache.org/hadoop/PoweredBy

tories, etc) is submitted to HDFS. The content along with
some instructions (the indexing rules) is fed to the Uploader,
which is a MapReduce program. The Uploader creates an
HBase table with the content in a record oriented view. A
second MapReduce task (Indexer) takes as input the Con-
tent table, and extracts the Index, which is also stored as
an HBase table. Users perform queries using the client API.
The API contacts the Index table to perform searches, and
the Content table to serve objects. In the following, we give
a detailed presentation of the system components.

Index rules: According to the content type, users pro-
vide the system with instructions of what to index. In this
phase, there is also a need to specify what are the bound-
aries of a single “record”. Records are used to split the entire
dataset in a number of distinct entities that will act as pro-
cessing units. For instance, in the XML case, record bound-
aries can be considered some specific tags. In the unstruc-
tured content situation (e.g. in HTML files) a specific record
can be a single HTML document, whereas in the database
case, records are table rows. It is important to note that our
system can adjust the granularity of the “record” according
to the user/application requirements. Apart from this, users
also select what specific content regions (attribute types)
they want to index (such as text contents of a specific XML
tag, contents of an HTML table or paragraph, data from a
specific table or column from a database, etc). Index rules
are used from every component (Uploader, Indexer and the
client API).

Uploader: The Uploader class reads bulk datasets pre-
viously uploaded to HDFS, and creates the Content table.
The Content table acts as a content hashmap, where every
row contains a single record item and the row key is the
MD5Hash of the record content. The Uploader class reads
data input from HDFS and creates the content table us-
ing the MapReduce paradigm as follows: In the Map phase,
mappers read from HDFS and emit a list of <key, value>
objects where, the key is the MD5Hash of the record, and
the value is an HBase cell containing the content. The re-
duce phase lexicographically sorts the incoming <MD5Hash,
HBase cell> key values according to the MD5Hash, stores
the results in HFiles (HBase data file format), and informs
HBase of the location of the new table data files. The use
of the content table is twofold: first, it allows fast random
access reads during successful index searches. Second, it
enables easy content manipulation in the case of new item
additions or deletions of old records.

Indexer: The Indexer module calculates an inverted list
of index terms and document locations and stores it in the
Index table. The row key of the index table (primary key)
is the keyword term followed by the attribute type on which
this keyword was encountered (e.g., if the keyword google

was found in a <revision> tag, then the row key will be
google_revision). Every row stores a list of MD5Hashes of
the records that contain this specific keyword (e.g., google)
in a specific attribute (e.g., revision). This list actually links
the Index to the Content table. The Indexer is a MapRe-
duce task that works as follows: in the Map phase, mappers
process the Content table, and emit a <keyword attribute,
MD5Hash> key-value pair for every keyword they encounter.
Reducers receive all emitted key-values for a specific key and
aggregate them in one key-value pair of the type <keyword-
attribute, list(MD5Hash)>. These key-value pairs are fi-

nally stored in HDFS (HFile format), and HBase is informed

about the new table.
The reason for bypassing the HBase API during initial

table creations is that it is many times slower for bulk in-
sertions, as it is explicitly stated by the HBase developers.
This happens because insertions are first written to a per-
sistent write-ahead-log and are afterwards accumulated in a
memstore (a sorted, in-memory buffer). When the memstore
is full, they are flushed to the disk in HFiles. By directly
storing HFiles, we avoid expensive intermediate interactions
with the write-ahead-log and the memstore for each new
object.

Client API: The client API provides the basic search and
get operations and it is built on top of HBase’s client API.
Our index design allows us to perform google-style freetext
queries over multiple indexed attributes. Users are able to
search content in a specific attribute type (e.g., find all docu-
ments that contain the keyword google in the <title> tag)
or in any attribute type. In the first case, the user query
is translated in an HBase point query with the parameter
“google title”, whereas in the second case it is translated in
a range scan in all the HBase rows that start with the prefix
“google ” (one for each attribute type), which by default are
lexicographically adjacent. More complex range queries of
the type: “find all documents that have a creation date in
2009” or prefix queries such as “find all the documents that
contain a keyword goo*” are also supported and are trans-
lated in an HBase range scan. In any case, the client contacts
HBase once for every query, even if this is a range scan, and
the network overhead between the client and HBase is only
one round-trip message per query. Query results consist of
a list of MD5Hashes of the matching documents that can be
retrieved with a simple lookup from the Content table. Our
system also enables AND-ing and OR-ing of queries through
client side processing: queries are executed for each dimen-
sion and query results are merged by the client to provide
the final list of the matching documents.

3. EXPERIMENTAL RESULTS
Our experimental setup consists of 11 worker nodes and a

single machine in the role of HDFS, MapReduce and HBase
master. The worker nodes have 2 Quad-Core E5405 Intel
Xeon R©CPUs @ 2.00GHz, 8 GB of RAM (with disabled page
swapping) and a 500GB disk (for a total of 88 CPUs, 88
GB RAM and 5.37 TB of disk space), while the master has
similar CPUs and disk, but only 2 GB RAM. The version of
Hadoop is the latest 0.20.1, re-compiled from source to suite
our setup. HBase version is 0.20.2.

The Hadoop MapReduce framework is configured to take
full advantage of the available resources. Hadoop and HBase
are each given 1 GB of memory in every running machine,
and each Mapper or Reducer task is given 512 MB of RAM.
Each worker node can spawn 6 Mappers and 2 Reducers run-
ning concurrently, for a total cluster capacity of 66 Mappers
and 22 Reducers. We have disabled Hadoop’s speculative
execution, where every task is executed 3 times for redun-
dancy, as this would drop the cluster’s effective capacity to
one third. HBase is managing its own Zookeeper (an Apache
project providing a distributed consistency system) instance
with 3 quorum nodes. HDFS was configured with a replica-
tion factor of 2.

During MapReduce execution, the framework automati-
cally sets the number of Map tasks. To enable full cluster
CPU utilization, Reducers for all jobs were manually set to

Table 1: Content table creation time for various
dataset sizes and types

XML HTML DB TXT
size time size time size time size time
GB min GB min GB min GB min
5 7 5 9 1 3 1 3
10 44 10 42 6 9 5 15
50 192 50 202 12 12 10 33
150 576 150 601 23 20 20 70

100. Any number beyond the cluster concurrent capacity of
22 would be sufficient, but a larger number minimizes the
effect of failed reduce tasks on job completion time.

Our datasets were downloaded from Wikipedia’s dump
service5 and from project Gutenberg’s custom DVD creation
service6. Our structured data comprises of a 23GB MySQL
database dump of the latest English version of Wikipedia.
The structured dataset was obtained from the current Medi-
aWiki XML dump available at the Wikipedia download site
with the use of mwdumper7 and uploaded to a local MySQL
5.0.51 database instance, from which a new SQL dump was
obtained to form the basis for our experiments. The reason
for this process was our desire to have a dataset consistent
with actual MySQL dumps.

Our semi-structured dataset comprises of one XML and
one HTML dataset: the XML dataset is a 150GB part
of a 2.55TB uncompressed XML dump of every English
Wikipedia page along with its revisions up till May 2008.
The HTML dataset in turn is a 150GB dump containing a
static version of Wikipedia from June 2008.

Our unstructured data is a full dump for all languages
of Gutenberg’s text document collection. The dataset com-
prises of approximately 46,300 text files, that take 20 GB of
hard disk space.

To locate attribute types during indexing creation, in the
structured (database dump) and the unstructured (text files)
case we utilized simple regular expressions, whereas in the
semi-structured (XML and HTML) case Xpath expressions
were used. In the case of HTML, all documents were fil-
tered through TagSoup8, a parser that converts HTML to
well formed XHTML documents.

In order to create query traffic, we utilized a publicly avail-
able dataset from AOL that contains twenty million search
keywords for over 650,000 users over a 3-month period9 to
calculate a zipfian query frequency distribution. During our
experiments, clients were generating both point and pre-
fix queries based on that distribution. The advantages of
the AOL keyword dataset compared to a random keyword
generator is that it follows a real-life, non-uniform skewed
distribution, where popular keywords are requested more
often. The experiments try to clarify the performance of
our indexing system under heavy user load when using a
reasonably large number of structured, semi-structured and
unstructured data.

3.1 Content table creation
In this section, we present our findings during the content

5http://download.wikimedia.org/
6http://snowy.arsc.alaska.edu/pgiso/
7http://www.mediawiki.org/wiki/MWDumper
8http://home.ccil.org/˜cowan/XML/tagsoup/
9http://techcrunch.com/2006/08/06/aol-proudly-releases-
massive-amounts-of-user-search-data/

50 100 150
Dataset size(GB)

0

25

50

75
In

de
x

si
ze

(G
B

) XML
HTML_7

5 10 15 20 25
Dataset size(GB)

0

10

20

30

40

In
de

x
si

ze
(G

B
) TXT

DB

50 100 150
Dataset size(GB)

0

100

200

300

400

500

T
im

e(
m

in
)

XML
HTML_7

5 10 15 20 25
Dataset size(GB)

0

60

120

180

T
im

e(
m

in
)

TXT
DB

Figure 2: Index size for various datasets Figure 3: Index time for various datasets

Table 2: Index size and creation time for different numbers of attribute
types (5GB HTML).

Iteration Indexed size time
No tags (count #) GB min
1 [table,li, p,b, i,u, title] (7) 1.049 7
2 1 + [h1, h2, h3, h4, h5, h6, big] (14) 1.097 6.5
3 2 + [blockquote, del, em, s, small] (19) 1.117 9.5
4 3+ [strong, sub, sup, tt, pre, dt, dd, font] (27) 1.296 11

Table 3: DB Index creation
time vs # of nodes.

of Nodes time(min)
2 34
4 23
6 16
8 11
11 10

table creation procedure. In Table 1 we depict the time it
took for the Uploader to create the content tables from raw
HDFS data for bulk insertion into HBase. The tests were
run using all the available nodes.

From Table 1 we can deduce that our system exhibits the
expected behavior for bulk insertion of the dataset. The
time to completion increases linearly with the size of the
dataset and is comparable between different types of data.
The diversion from the norm of the structured dataset can
be explained by taking into account the reduced process-
ing required for the SQL dataset. Similarly, the larger than
expected time to completion for the plain text Uploader is
justified, given the fact that it is composed of a large num-
ber of very small files. Thus, the initialization penalty for
each Mapper is high compared to the processing, and though
small (about 1 second), makes a significant difference given
the average time to completion for each file (2-5 seconds).

3.2 Index table creation
In this section, we present our experiments during the in-

dex table creation. We are interested in the index size and
creation time. Index tables are created from the content
tables described in Section 3.1. In Figure 2 we present the
growth of the index size as the content table increases. The
first figure presents index growth for the HTML and XML
dataset, whereas the second figure depicts index growth for
the DB and TXT dataset. In Figure 3 we present the index-
ing time of the aforementioned four dataset types for various
sizes. In the HTML 7 case, the indexed attributes are the
first 7 HTML tags from Table 2, whereas in the XML case,
<content> and <timestamp> tags are indexed.

In Figure 2 for the XML and HTML inputs we notice
that in any case the growth of the Index table gets smaller
with the increase of the dataset: this happens because, af-
ter a certain Content size, indexed terms size is not signifi-
cantly increased. What is more, we notice that XML index
is larger than the HTML index of the same dataset size:
HTML dataset contains a lot of formatting code that gets
stripped during keyword extraction, whereas in the case of
XML there is (almost) clean text. In the case of DB and
TXT, the variations between structured and unstructured
data as to the size are justified, as the structured dataset is
already indexed in a reasonable way. Moreover, the diversity

between the different documents contained in the Gutenberg
collection (in terms of language and topic) means that a lot
more terms have to be indexed, increasing the size of the
index because of the added metadata.

In Figure 3 for the XML and HTML we notice that the
XML dataset is more demanding in terms of processing time
compared to the HTML dataset, because of the HTML for-
matting code that gets stripped during indexing. In the
TXT and DB case, the structured DB dataset is the most
easily indexed, as the system does not perform much re-
indexing except for re-arranging the data to fit its internal
specifications. The TXT dataset obviously requires much
more time, as more processing is needed to extract and pro-
cess metadata. Both datasets however exhibit near linear
scalability as the number of data increase, but with differ-
ent angles as explained before. This is a desirable outcome
for the Indexer, as it highlights its robustness and good be-
havior under these tests.

We now present experiments that show how our indexing
mechanism responds when we vary the number of the at-
tribute types. We utilize the 5GB HTML dataset and we
increase the number of attribute types in every iteration, as
we depict in Table 2: in every iteration, all the tags from the
previous iterations are included. In Table 2 we present the
growth in the indexing time and size for every iteration. As
expected, both the size and the index time increases along
with the attribute type number. Nevertheless, this increase
rate remains relatively low.

In the following experiment, we measure the scalability of
the indexing mechanism by varying the number of the clus-
ter nodes while keeping a stable index input dataset size.
We run the Indexer on the largest DB dataset and in Table
3 we present the index creation time variation. As expected
by the fully distributed indexing nature of MapReduce, the
speed is proportional to the number of processing nodes,
something that proves the system’s scalability during index
creation. This property is a typical cloud application re-
quirement, since extra nodes are acquired by a cloud vendor
in an easy and inexpensive manner.

3.3 System performance under query load
In this section we measure our system’s ability to respond

to a large number of simultaneous user queries. We consider

10 100 1000 10000
Load (queries/s)

0.01

0.1

1

10

100

1000

R
es

po
ns

e
T

im
e

(s
)

Range
Any
Exact

0 25 50
Dataset size(GB)

0.01

0.1

1

10

R
es

po
ns

e
T

im
e

(s
)

Range
Any
Exact

0 8 16 24
Number of Attributes

0.01

1

R
es

po
ns

e
T

im
e

(m
s)

Range
Any
Exact

Figure 4: Response time of queries vs system load in queries/s, original data size and number of
indexed attributes.

three types of queries on indexed attributes: free keyword
search in a specific attribute, free keyword search in any
attribute and prefix queries in any attribute type. Prefix
queries were generated using the first four characters of ran-
domly selected AOL keywords. The test obtains response
times from HBase for these search types. Client instances
were run concurrently on 14 machines, to ensure realistic
measurements in terms of network load from different ma-
chines. Most of the tests were executed using a 14GB index
table of a 50GB HTML dataset subset. For the response
times vs data size, 5, 10 and 50 GB partitions of the HTML
dataset were used with 7 indexed attributes (as seen in Table
2).

Our first experiments evaluate the maximum load mea-
sured in queries/s that our index table can support in HBase.
We have observed the limit of HBase when serving queries
by running 14 concurrent clients, each sending queries with
a delay that follows an exponential distribution probability
function. Our experiments (results seen in Figure 4a) were
run with values higher than the previously reported limit for
sustained queries per second against HBase on HDFS[11].
Although high response times were measured, the system
remained stable and kept serving requests even under heavy
load, highlighting the robustness of HBase. Range query
loads above 140 queries/s however failed to complete and in
most cases the clients had to be manually terminated. This
is reasonable, as such queries request a large number of data
and demand processing on both the server and client, in-
creasing exponentially the load on available resources. For
reasonable load on the server, in the order of 14 queries per
second from different clients, we have measured response
times close to 20 ms for point queries, 150 ms for any at-
tribute queries and 27 seconds for range queries.

We believe that the observed behavior of the system in
Figure 4 is a consequence of HBase caching: up to 100
queries/s there are available channels to accommodate the
clients. Beyond this point, the response time increases be-
cause of the increased client requests, who now have to wait
in line to be served. Between roughly 100 to 1000 queries/s,
HBase caching is significant: each popular keyword is loaded
only once in memory and then served as is. This leads to a
significant decrease of the average response time of the sys-
tem because of the skewed distribution of the requests. This
tactic fails for load above 1000 queries/s and the average re-
sponse time for queries increases exponentially.

Running queries for datasets of different sizes, shown in
Figure 4b, the response times follow an expected pattern.
The tests were run with an average load of 14 queries per
second for the system, i.e. 14 clients issued on average one
query per second. The choice was made to ensure that range
queries would be included in our results. Range queries are

the most expensive, and therefore response times are larger,
as are searches for a specific keyword in any indexed at-
tribute. Response times for point queries (exact matches of
keyword and attribute) remain relatively constant, irrespec-
tive of dataset size, while response time for range and any
attribute queries increases slowly as the number of records
containing them increases with the datasize.

An increase in the number of attributes (Figure 4c) has
no effect on the response time of point queries, and this
highlights the efficiency of the system. Similarly, times for
range queries and queries in any attribute scale almost lin-
early, keeping the overhead small even for large indices. This
might seem unexpected, as for most range queries, it would
mean a theoretical increase of factor 27. This is not the
case due to the structure of HTML: since the expected nest-
ing depth of HTML tags is low, the number of query results
returned by such queries rarely reaches this theoretical max-
imum. However, since the selection of indexed attributes is
left to the user, this behavior could theoretically be simu-
lated by choosing consistently nested tags (e.g. table, tr and
td in HTML). Given the limited usefulness of such a selec-
tion though, we believe that it is not a concern for practical
system use.

4. RELATED WORK
The distributed cooperation of a large number of compu-

tational and storage resources is a challenging task. Appli-
cation specific requirements of large scale data management
tasks (e.g. the need to push computation near the data) pro-
hibit the use of typical general purpose job schedulers. To
cope with these requirements, “data-aware” distributed data
management frameworks have been proposed, with Google’s
MapRreduce [7] as the most prevalent. MapReduce is in-
spired by the typical “map” and “reduce” functions found in
Lisp and other functional programming languages: a prob-
lem is separated in two different phases, the Map and Reduce
phase. In the Map phase, non overlapping chunks of the in-
put data get assigned to separate processes, called mappers,
which process their input and emit a set of intermediate re-
sults. In the Reduce phase, these results are fed to a (usually
smaller) number of separate processes called Reducers, that
“summarize” their input in a smaller number of results that
are the solution to the original problem. For more complex
situations, a workflow of map and reduce steps is followed,
where mappers feed reducers and vice versa.

On top of MapReduce, a number of frameworks have been
proposed to facilitate the management and execution of data
warehousing tasks. Yahoo’s Pig [13], Facebook’s Hive [14]
and HadoopDB [4] are a representative subset of such frame-
works. In these frameworks, users write their analytical jobs
in a declarative scripting language, they are translated in a

chain of MapReduce steps and they are executed on Hadoop.
Microsoft’s SCOPE is a similar approach but it is deployed
on top of Cosmos, a proprietary distributed storage and ex-
ecution engine.

A number of content analytic platforms built on top of
Hadoop have been proposed recently. In [5], IBM presents a
preliminary version of their work on analyzing large datasets
using Hadoop, where they do not deal with serving the cre-
ated content. Distributed index creation frameworks that
exploit the parallelism of Hadoop and HBase have been re-
cently announced. Ivory, [12] an indexing framework im-
plementation on top of Hadoop, distributes only the index
creation through a MapReduce job, whereas the index is
served through a centralized repository. On the other hand,
HIndex [11] serves indices through HBase, but the index cre-
ation is centralized. In our system, both the index creation
and serving is done in a distributed way.

5. DISCUSSION
The indexing system described above is an attempt to

leverage the abilities of Hadoop and HBase over similar dis-
tributed approaches. In essence, we complement the MapRe-
duce framework’s ability to distribute processing over a large
number of nodes with HBase’s flexible and high performance
architecture. Similar solutions (see Pig[13] or Hive[14]) deal
with the same problems by running MapReduce jobs for each
query submitted. While this allows for complex queries, it
also requires significant processing time on the servers for
each query and knowledge of the way the data are physi-
cally stored. In comparison, our solution aims for speed in
simple queries, while most of the processing required on com-
plex queries is performed by the client. This keeps network
traffic and CPU load on the data servers at a minimum, al-
lowing for more concurrent client connections. HadoopDB[4]
extends Hive with support for SQL queries but suffers from
the same issues, although it does allow for data partition-
ing, which would be comparable with our indexing process.
However, this requires explicit knowledge of the HadoopDB
architecture, while alternative partitioning rules (i.e., views
in database terminology) cannot be enforced.

In contrast to other approaches (such as Ivory[12] and
HIndex[11]) that distribute only one part of the process,
our implementation has the benefit of a fully distributed
architecture. This ensures full utilization of the available
physical infrastructure and increased scalability. Moreover,
our approach significantly reduces the time needed for both
index creation and query responses.

Considering that data are already stored in HDFS, storing
them again in HBase seems redundant: one could use the
offsets of an HDFS file as record identifiers. Yet, such an
approach makes insertion of records difficult, as all offsets
need to be re-calculated. HBase can perform single imports
and requires few updates in the index table per new record.
Instead of index updates, if consistency between the context
table and its index is relaxed, periodic reruns of the Indexer
can be used. An evaluation of the trade-off between these
two approaches is left for future work.

At the moment, the content and index creation is a serial
procedure that could be otherwise pipelined: the output of
an Uploader reducer could be directly fed to the Indexer
mapper and written down to HDFS as HFiles at the same
time using a chain of MapReduce steps. Nevertheless, this
operation is new and, in our opinion, relatively unstable in

the current Hadoop version.
The need for complex row keys in the index table (e.g.,

google revision) was imposed from the diversity of our data-
sets. Different data types (structured, unstructured, semi-
structured) constrain the granularity of the index in different
ways. With such a complex row key, a single index table
that accommodates all these constraints can be used, while
making client lookups for specific attributes from different
data types fast and straightforward. This structure can also
overcome HBase limitations on the dimensionality of the
data stored in its tables.

In the future, our system will be extended to support more
complex queries, such as SQL-like joins, and complex table
views for the content and index tables. This would make
our system more functional while preserving its main advan-
tages, speed and ease of use. Another useful improvement
to our implementation would be support for secondary in-
dices to speedup custom searching on different dataset di-
mensions. This would be implemented using the same basic
design as the index table and would immediately increase
the usability and lower response times for complex, multidi-
mensional queries. We are also considering the deployment
of our system to an actual cloud vendor such as Amazon.

6. REFERENCES
[1] Nosql databases. http://nosql-databases.org.

[2] Project Voldemort. http://project-voldemort.com.

[3] D. J. Abadi. Data Management in the Cloud:
Limitations and Opportunities. IEEE Data Eng. Bull,
32(1):3–12, 2009.

[4] A. Abouzeid et al. HadoopDB: an architectural hybrid
of MapReduce and DBMS technologies for analytical
workloads. In VLDB, 2009.

[5] K. S. Beyer et al. Towards a Scalable Enterprise
Content Analytics Platform. IEEE Data Eng. Bull.,
32(1):28–35, 2009.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. In OSDI, 2006.

[7] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[8] G. DeCandia et al. Dynamo: Amazon’s Highly
Available Key-value Store. In SOSP, page 220, 2007.

[9] S. Ghemawat, H. Gobioff, and S. T. Leung. The
Google File System. ACM SIGOPS Operating Systems
Review, 37(5):43, 2003.

[10] A. Lakshman and P. Malik. Cassandra-A
Decentralized Structured Storage system. In LADIS,
2009.

[11] N. Li, J. Rao, E. Shekita, and S. Tata. Leveraging a
scalable row store to build a distributed text index. In
CloudDB, pages 29–36, 2009.

[12] J. Lin, D. Metzler, T. Elsayed, and L. Wang. Of Ivory
and Smurfs: Loxodontan MapReduce Experiments for
Web Search. In TREC, 2010.

[13] C. Olston et al. Pig Latin: A Not-so-foreign Language
for Data Processing. In SIGMOD, pages 1099–1110,
2008.

[14] A. Thusoo et al. Hive - a Warehousing Solution over a
Map-Reduce Framework. PVLDB, 2:1626–1629, 2009.

	1 Introduction
	2 Architecture
	3 Experimental Results
	3.1 Content table creation
	3.2 Index table creation
	3.3 System performance under query load

	4 Related Work
	5 Discussion
	6 References

