2018 IEEE 38th International Conference on Distributed Computing Systems

Docker-sec: A Fully Automated Container Security
Enhancement Mechanism

Fotis Loukidis — Andreou, Ioannis Giannakopoulos, Katerina Doka and Nectarios Koziris
Computing Systems Laboratory, National Technical University of Athens, Greece
{flouk, ggian, katerina, nkoziris} @cslab.ece.ntua.gr

Abstract—The popularity of containers is constantly rising
in the virtualization landscape, since they incur significantly
less overhead than Virtual Machines, the traditional hypervisor-
based counterparts, while enjoying better performance. However,
containers pose significant security challenges due to their direct
communication with the host kernel, allowing attackers to break
into the host system and co-located containers more easily than
Virtual Machines. Existing security hardening mechanisms are
based on the enforcement of Mandatory Access Control rules,
which exclusively allow specified, desired operations. However,
these mechanisms entail explicit knowledge of the container
functionality and behavior and require manual intervention and
setup. To overcome these limitations, we present Docker-sec, a
user-friendly mechanism for the protection of Docker containers
throughout their lifetime via the enforcement of access policies
that correspond to the anticipated (and legitimate) activity of the
applications they enclose. Docker-sec employs two mechanisms:
(a) Upon container creation, it constructs an initial, static set
of access rules based on container configuration parameters;
(b) During container runtime, the initial set is enhanced with
additional rules that further restrict the container’s capabilities,
reflecting the actual application operations. Through a rich
interaction with our system the audience will experience first-
hand how Docker-sec can successfully protect containers from
zero-day vulnerabilities in an automatic manner, with minimal
overhead on the application performance.

I. INTRODUCTION

In the last years, Cloud computing has prevailed over
traditional on-premise environments as a means of executing
applications and/or offering services for a wealth of rea-
sons, including reduced costs, seemingly infinite resources
purchased in a pay-as-you-go manner, scalability, ease of
maintenance, etc. One of the key enablers of Cloud Computing
is virtualization, since it can provide the necessary abstraction
that allows multiple independent virtual systems to share the
same pool of physical resources [1]. Recently, containers have
gained ground as a lightweight virtualization solution that
offers a plethora of benefits compared to Virtual Machines
(VMs), the traditional hypervisor-based alternatives.

Most importantly, containers incur significantly less over-
head than VMs, since they run as user-space processes on
top of the kernel, which they share with the host machine.
Moreover, they provide the ability to enclose application
components in lightweight units, simplifying their distribution
and deployment. As a result, large-scale applications can be
managed in an automated manner.

As their popularity rises, containers have been successfully
used in various use cases, while technologies around them

enjoy active development [2], [3]. Despite that, a low adoption
rate of container technology has been observed according to
the Cloud Foundation [4] and many researches designate se-
curity concerns as a determining factor [5]. Indeed, containers
were not designed with security in mind. Albeit providing
isolation to certain resources such as processes, file system,
network, etc. and enforcing quotas to CPU, RAM and disk
usage, containers are much more prone to attacks compared
to VMs due to the absence of a hypervisor, which adds an
extra layer of isolation between the applications and the host.
Since containers and host share the same kernel, compromised
or malicious containers can more easily escape out of their
environment and allow attacks on the host kernel.

The most effective way to harden the security of Linux
containers is to enforce Mandatory Access Control (MAC)
at the kernel level to prevent undesired operations both on the
host and the container side, using tools like AppArmor [6] or
SELinux [7]. However, this is a cumbersome process which
requires knowledge of the characteristics and requirements
of the application running inside the container and manual
creation of the specific security rules to be applied. A recent
attempt to automate the extraction of MAC rules [8] operates
on a per image rather than a per container instance basis,
leaving room for cross-container attacks.

To overcome these limitations we demonstrate Docker-sec,
an open-source', automatic and user-friendly mechanism for
securing Docker and generally OCI?> compatible containers.
Docker-sec protects containers from attacks against both the
host and the container engine, restricting the container access
to the resources that are truly necessary for the operation
of the encompassed application. Docker-sec uses AppArmor
to enforce access policies to all critical components of the
Docker architecture by applying secure profiles to each of
them. Container profiles are constructed based on (a) the static
analysis of the container execution parameters and (b) the
dynamic monitoring of the container behavior during runtime.
More specifically, Docker-sec offers users the ability to auto-
matically generate initial container profiles based on configu-
ration parameters provided during container initialization (e.g.,
allowing only specific folders and files to be mounted). If a
stricter security policy is required, Docker-sec can dynamically

Uhttps://github.com/FotisLouk/docker-sec

2The Open Container Initiative (OCI) is a Linux Foundation project to de-
sign open standards for operating-system-level virtualization, most importantly
Linux containers.

2575-8411/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDCS.2018.00169

1561 IEEE
computer
® psoaety

enhance the initial profile with rules extracted through the
monitoring of real-time container execution during a pre-
production period. By virtue of its two mechanisms, Docker-
sec can protect containers since their very creation from zero-
day vulnerabilities, incurring only a minimal overhead on the
application performance.

Our demonstration of Docker-sec will showcase its ability to
i) automatically derive initial access rules that restrict container
capabilities to the very essential ones for its operation (via our
static analysis mechanism) and ii) enhance the initial set of
rules with additional ones that better reflect the enclosed ap-
plication operations (via our dynamic monitoring mechanism).
Both mechanisms will be demonstrated for Docker containers
hosted in a private Opestack laaS cluster. The participants
will be able to interact with Docker-sec through an enhanced
Docker Web Management UI, choosing from a number of
different application containers and simulated attacks.

II. DOCKER-SEC ARCHITECTURE

Docker-sec is a container protection mechanism based on
Docker, the most popular Linux container implementation,
although it can easily be applied to any container abiding
the OCI standard. In a nutshell, Docker uses a client-server
architecture that consists of the Docker client and the Docker
host (Figure 1). The Docker client is the user interface to
Docker and interacts with the Docker host through the Docker
Engine, a daemon responsible for building, running, and
distributing the containers residing in the host machine. In
order to manage the container’s lifecycle, Docker Engine uses
containerd a lightweight daemon that can handle multiple
concurrent requests. Containerd, in turn, relies on runC, a
CLI tool, to handle low-level container operations. RunC is
usually executed by containerd-shim, a process which is used
to manage headless containers.

The basic sandboxing mehcanism of Docker is Linux
namespaces, which are able to virtualize and isolate various
components of the system. However, in order to provide the
required functionality, namespaces are usually tied to resources
of the host system that cannot be virtualized. For example,
although mount namespace offers the container a different
view of the file system hierarchy, usually various essential file
systems (such as cgroups and sysfs) are shared with the host.
Through them, a container can access sensitive information
and settings. Consequently, we need to identify the resources
that Docker allows the container to access, determine the
ones that are sensitive and protect them via Apparmor. It is
also important to guard the processes through which these
resources are assigned to containers, so as to allow only
legitimate access to them.

Docker-sec adds an additional security layer on top of
Docker’s security defaults by automatically creating per-
container AppArmor profiles. The system is protected from
malicious or undermined containers that try to take control
of the host or the containers running on it, since containers
cannot communicate with other processes via signals, ptrace
or D-Bus. Furthermore, Docker-sec enhances container secu-

rity through generating dynamic security profiles, given an
application workload. This way the privileges of a container,
(e.g., capabilities, network access, etc.) are confined to the bare
minimum that is needed for the specific workload. As a result,
users of Docker-sec can gain the benefits of a MAC system,
without having to deal with the complexity of maintaining it.

Docker Engine

Containerd

runC runC

Fig. 1. Docker components protected with AppArmor in Docker-sec

Docker-sec creates secure AppArmor profiles for all Docker

components that require protection to render the environment
more secure. First of all, Docker-sec creates and enforces
AppArmor profiles on containers, which serve as an entry
point of an attacker, since they run arbitrary code and are
accessible by users of the virtualized applications. The goal
is to construct a separate profile per container, placing each
one in a separate security context in order to restrict the
sharing of resources among containers. Second, Docker-sec
creates AppArmor profiles to protect runcC, since it is the only
process that can directly interact with containers via signals.
Thus, Docker-sec is able to protect the entire process of
launching the container, i.e., from the moment that runcC starts
initializing the container until it hands the control over to the
process running inside it. Finally, Docker Engine is protected
with a separate AppArmor profile, since users that can access
it have full control over containers, images, volumes and
network. The components of Docker that are automatically
protected via AppArmor profiles via Docker-sec are designated
with red locks in Figure 1.
»Container Profile: Container profiles are created using
rules extracted from the configuration of each container and
enhanced with rules based on the behavior of the contained
application. To that end, Docker-sec employs two mechanisms:
(a) Static analysis, which creates initial profiles from static
Docker execution parameters and (b) dynamic monitoring
which enhances them through monitoring the container work-
flow during a user-defined testing period.

The Static Analysis mechanism collects important static
information about the container and its accesses. This informa-
tion, which is either provided by the user as command line ar-
gumets or generated by Docker and obtained through Docker-
specific commands, is used to derive initial security rules
and construct the appropriate profiles under which the new
container will be launched. More specifically, when the user
executes docker create or docker run, commands
with which the Docker Engine constructs the requested con-

fall

1562

tainers, Docker-sec collects from the command line arguments
important information such as the container volumes, i.e., the
files and folders of the host filesystem mapped to the container,
as well as the container user, root or non-root, and the
accompanying privileges. Moreover, through docker info,
the command that displays system wide information regarding
the Docker installation, Docker-sec obtains information like
the ID of the container, which is a SHA256 checksum, and the
mount point of the container’s root file system. By knowing
this information, Docker-sec can enforce runC to transition
to a temporary AppArmor profile, which is designed for the
initialization phase of the specific container. After this phase
ends and before handing the control over to the container
process, runC transitions to the AppArmor profile which will
be used (and possibly enhanced by the Dynamic Monitoring
mechanism) during the container’s runtime.

Dynamic Monitoring allows the user to specify a training
period for a specific container, during which Docker-sec will
collect data about the behavior of the container. After initiating
the training session, the user utilizes the part of the application
she is interested in, making use of all the required application
functionality, so that Docker-sec can determine the privileges
(e.g., network access, file-system access, capabilities) that
are necessary for the container to function properly. At the
end of the training period Docker-sec analyzes the audit log
that records the legitimate container accesses and adds the
corresponding rules to the containers runtime profile, possibly
discarding unnecessary privileges that were initially granted
to it by the runtime profile generated by the static analysis
phase. The training process can be repeated, if necessary,
until all the required functionality is captured and imprinted
in the container profile. Of course, during the training of the
container runtime profile, it is important that only authorized
and trusted users have access to the container and the container
application. Otherwise, it is possible to record and grant access
to system resources that are not needed by the container,
undermining system security. It is worth noting, that while one
container is under training mode, the rest of the containers are
still protected.

, create,
I update
=

» Container

1. start app

»

3.train-stop audit

accesses

Audit Logs

[
1 docker-sec
(sl i 2 NN

Fig. 2. Training process for container runtime profile

To provide the above functionality, Docker-sec uses Ap-
pArmor’s capabilities for auditing certain accesses that are
required by a process. AppArmor can set a profile in either
enforce mode, where all the profile rules are enforced and no
violations are allowed, or in a complain mode where violations
of the rules are recorded but allowed for the execution of
the corresponding system calls. In addition to the above, it is

possible, through appropriate rules, to mix these two modes,
providing greater flexibility. In particular, by maintaining a
profile in enforce mode, we can choose to monitor and log
the set of accesses governed by the rule, while the remaining
rules of the profile continue to be enforced protecting the
system. Therefore, by utilizing this capability, we can monitor
the container’s access to specific resources.
»RunC Profile: Since runC directly interacts with container
processes through commands like docker run, docker
exec or docker stats, we have opted for a separate Ap-
pArmor profile for it. The runC profile contains the appropriate
rules, one per container, that allow runC to set each container’s
root mount point through the pivot_root system call and
assign it a separate temporary profile. This temporary profile,
used during the initialization of the specific container, protects
the container until its transition (via aa_change_profile
or aa_change_onexec functions) to the final container
profile, used during the container runtime as described earlier.
Thus, Docker-sec protects the whole container lifecycle,
starting from the runC profile, continuing with the temporary
profile, during container initialization, and ending up with
the final container profile, used during application runtime.
As a result, access to the containers via signals or ptrace
is allowed only to the legitimate procceses of the host, and
most importantly, containers cannot access or control host
processes via these mechanisms, minimizing the attack surface
and protecting from a variety of attacks (e.g., CVE-2016-
9962).
»Docker Daemon Profile: To protect the Docker Daemon,
Docker-sec adopts a modified version of the AppArmor
profile, available from the Docker github repository, which
restricts access exclusively to the resources and tools/binaries
(e.g. ps, cat, Is, etc.) that the Docker Engine requires for its
operation.

III. PRELIMINARY PERFORMANCE RESULTS

80

T T T
< enabled

T T
mmm disabled

T T T
mmm disabled

N = bled L olo o of
E ol g 0'940_2:/:61 © | g0.4 9“0\0 b(9‘| lo 9@l Q’L‘n
t R RE gos |
E 60 § & s b E 0z L i
g ol § 0.04% s & | g
w § E \ \ : wo1 1

N BN . N IR

prime fft stresslO rwd socket \)bo“\“oe\i\a“mj\(\ee\ﬁbowe‘age

Fig. 3. Performance overhead of Docker-sec

We now evaluate the performance overhead introduced
by Docker-sec during the launching of a container and the
execution of the contained application due to the enforcement
of the AppArmor profile. Our evaluation unfolds in two axes.
First, utilizing stress-ng>, a popular benchmarking tool used
to stress a computer system, we execute different workloads
and compare execution times, using an Ubuntu image drawn
from its official Docker Hub registry*. We consider two types

3http://kernel.ubuntu.com/cking/stress-ng/
“Docker Hub is a cloud-based registry service for container image discov-
ery, distribution and change management. https://hub.docker.com

1563

of Docker containers: One that is secured with Docker-sec
(referred to as “enabled”) and one that runs without any se-
curity profile enabled (referred to as “disabled”). The selected
workloads are i) prime, which calculates prime numbers, ii)
Jit, which executes the Fast Fourier Transformation, iii) stress
10, which executes sequential and random access reads/writes,
iv) rwd, which reads, writes and deletes files and v) socket,
which continuously opens and closes sockets. Second, we
measure the time required for the container’s bootstrap, using
5 different Docker images obtained from official repositories
on Docker Hub. The choice of the specific images has been
dictated by their bootstraping time: We chose images with
small initialization time as our worst case scenario, so as to
examine the maximum posssible relative overhead introduced
by our mechanisms.

Our evaluation indicates that utilizing Docker-sec introduces
a minimal overhead both during the container’s lifetime (Fig-
ure 3, left) and during the container’s bootstrapping (Fig-
ure 3, right). Specifically, in the former case, the observed
overhead does not exceed 3.5%. For CPU-bound applications
(e.g., prime, fft) the observed overhead is marginal, whereas
benchmarks that stress file system resources (i.e., stress I/O
and rwd) present slightly increased overhead that does not
surpass 1%. Interestingly, the highest overhead is measured for
the socket benchmark. This behavior is attributed to the fact
that the enforcement of AppArmor rules in socket creation/de-
struction takes more time than in all other cases. Finally, when
measuring the delay introduced in container bootstrapping for
different Docker images, we notice that Docker-sec introduces
a relatively constant overhead (between 2 — 4%) regardless of
the image type.

IV. DEMONSTRATION DESCRIPTION

Docker-sec implements a command line interface similar to
Docker, appending the suffix —sec, to the existing docker
commands. Our automated system is based on AppArmor
and a wrapper utility written in bash, which is responsible
for creating AppArmor profiles tailored to specific container
instances and for interacting with Docker Engine to perform
the necessary operations in order to enforce them.

The attendees will interact with Docker-sec through a com-
prehensive, web-based GUI. The basic interaction dimensions
comprise container creation, new AppArmor profile creation
for a given container image, executing well known exploits and
training arbitrary container images with different workloads.

Our demonstration covers two use cases. In the first sce-
nario, the attendees will be able to verify Docker-sec’s effi-
ciency through building an enhanced security profile tailored
to a specific container instance and attempting to exploit it.
In the second scenario, the attendees will be able to create a
new security profile using an arbitrary container running any
given workload. More precisely:

»Exploiting containers: In the first use case, the user will be
able to start a new WordPress container using the Docker-sec
CLI The container will be launched using the profile created
through the static analysis mechanism. After initializing the

container, the user will define a monitoring period and use
the container through the WordPress UI. During this period,
she will observe how the profile is being modified through
the dynamic monitoring mechanism, which audits specific
system resources, while protecting the rest of the system, since
the static profile is still being enforced. When the training
phase completes we will compare the static profile with the
dynamic one to determine the exact privileges required by the
specific application and to understand how Docker-sec restricts
container access.

Next, the attendees will be able to attack the host system

through an undermined container and compare the effects
of the attacks when the container uses (a) no profile (i.e.,
totally unprotected container), (b) a vanilla AppArmor profile,
(c) the profile created through the static analysis phase of
Docker-sec, and (d) the profile created by both the static and
the dynamic mechanisms of Docker-sec. In this step, after
gaining access to a shell inside the container, the users will
be able to “act maliciously” through the execution of various
simulated attacks, like modifying the SSH daemon, installing
new utilities inside the container or exploiting a vulnerability
of the container engine (e.g., CVE-2016-9962).
» Constructing new profiles: In the second use case, the
attendees will be given the opportunity to run Docker-sec for
a variety of Docker images and enclosed workloads. They will
be then able to compare the profiles generated for containers
of identical images but different workloads executing within
them. Through this process they will be able to discover the
different set of privileges required for each container and how
Docker-sec adapts to them. To that end, various benchmarks
will be available, including heavy application loads or stress-
ing of specific parts of a computer system, like CPU and
I/0. Moreover, due to the variety of benchmarks, users can
experience first-hand the overhead imposed by Docker-sec
and AppArmor for various application types and assess its
performance both in real life and extreme case scenarios.

ACKNOWLEDGEMENT

This work has been supported by the European Commission
in terms of the E2DATA H2020 ICT Project (780245).

REFERENCES

[11 L. Vaquero et al., “A Break in the Clouds: Towards a Cloud Definition,”
ACM SIGCOMM, vol. 39, no. 1, pp. 50-55, 2008.

[2] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” Queue, vol. 14, no. 1, p. 10, 2016.

[3]1 S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc.”, 2015.

[4] “Hope Versus Reality, One Year Later An Update on Containers,”
https://www.cloudfoundry.org/wp-content/uploads/2012/02/Container-
Report-2017-1.pdf.

[5] “Portworx Annual Container Adoption Survey 2017,”
https://portworx.com/wp-content/uploads/2017/04/Portworx_Annual_
Container_Adoption_Survey_2017_Report.pdf.

[6] “AppArmor,” https://wiki.ubuntu.com/AppArmor.

[7]1 “SELinux,” https://selinuxproject.org.

[8] M. Mattetti et al., “Securing the Infrastructure and the Workloads of
Linux Containers,” in /[EEE CNS, 2015, pp. 559-567.

”

1564

