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The skyline of a set P of points consists of the “best” points with respect to minimization 
or maximization of the attribute values. A point p dominates another point q if p is as 
good as q in all dimensions and it is strictly better than q in at least one dimension. In 
this work, we focus on the 2-d space and provide expected performance guarantees for 
dynamic (insertions and deletions) 3-sided range skyline queries. We assume that the x
and y coordinates of the points are drawn from a class of distributions and present the 
ML-tree (Modified Layered Range-tree), which attains O (log2 N log log N) expected update 
time and O  (t log log N) time with high probability for finding planar skyline points in a 
3-sided query rectangle q = [a, b] × [d, +∞) in the RAM model, where N is the cardinality 
of P and t is the answer size.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we study efficient algorithms with non-
trivial performance guarantees for dynamic planar skyline
processing. Let P denote the set of points in the data set. 
Also, let pi denote the value of the i-th coordinate of a 
point p. A point p ∈ P dominates another point q ∈ P
(q ≺ p) when ∀i, pi ≥ qi and ∃ j such that p j > q j . The 
skyline of a set of points P contains the points that are 
not dominated by any other point.

In this work, we present the ML (Modified Layered 
Range) tree-structure that provides a loglogarithmic ex-
pected solution for finding planar skyline points in a 
3-sided query rectangle [a, b] × [d, +∞) in the RAM 
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model under point insertions and deletions. This form of 
query resembles a 3-sided range reporting query with 
an additional skyline requirement and is handled by 
the ML-Tree for points drawn from specific distribu-
tions in O (log2 N log log N) expected update time and 
O  (t log log N) query time w.h.p. The proposed data struc-
ture is inspired from the Modified Priority Search Tree pre-
sented in [6] that supports 3-sided range reporting queries. 
However, the modifications to support skyline queries are 
non-trivial. Note, that if the query range is defined as 
[a, b] × (−∞, d] then the problem becomes harder since 
the skyline can change dramatically based on the choice 
of d. This is in fact the main reason for which the 4-sided 
skyline query [1] is more expensive than the respective 
3-sided skyline query.

The best previous solution was presented in [1] and 
supports range skyline queries in O (

log N
log log N + t) worst 

case time and updates in O (
log N

log log N ) worst case time us-
ing linear space in the RAM model of computation. Al-
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though their solution is optimal in the generic case, ML-
tree achieves better query time when the size of the re-
ported skyline is small (approximately t <

log N
log2 log N

) and 
when the point coordinates follow specific class distribu-
tions.

Our work is organized as follows. Fundamental concepts 
are presented in Section 2 while the ML-tree and its dy-
namic version are given in Sections 3 and 4, respectively.

2. Fundamental concepts

For the remainder of this work we adhere to the RAM 
model of computation. We denote by N the number of el-
ements that reside in the data structures and by t the size 
of the query.

Furthermore, throughout this work we make use of 
( f1, f2)-smooth distributions for which we provide an in-
tuitive definition: “among a number (measured by f1(n) =
nα, α < 1) of consecutive subsets, each containing consecutive 
keys from a universe U , no subset containing consecutive keys 
from U should be too dense (measured by f2(n) = nδ, δ < 1) 
compared to the others” (i.e., the distribution does not con-
tain sharp peaks). A detailed description of ( f1, f2)-smooth 
probability distributions can be found in [5].

Insertions follow a particular distribution among the 
family of ( f1, f2)-smooth distributions while deletions of 
elements are equiprobable. That is, every element present 
in the data structure is equally likely to be deleted [7]. In 
the following, we describe the data structures that we use 
in order to achieve the desired complexities.

Half-Range Minimum/Maximum Queries: The half-
Range Maximum Query (h-RMQ) problem asks to preprocess 
an array A of size N such that, given an index range [r, N]
where 1 ≤ r ≤ N , we are asked to report the position of 
the maximum element in this range on A. Notice that we 
do not want to change the order of the elements in A, 
in which case the problem would be trivial. This is a re-
stricted version of the general RMQ problem, in which the 
range is [r, r′], where 1 ≤ r ≤ r′ ≤ N . In [4] the RMQ prob-
lem is solved in O (1) time using O (N) space and O (N)

preprocessing time. We could use this solution for our h-
RMQ problem, but in our case the problem can be solved 
much simpler by maintaining an additional array Amax of 
maximum elements for each on the N positions in the ini-
tial array.

q∗-heaps: The q∗-heap [11] is a data structure having 
the following property: let M be the current number of el-
ements in the q∗-heap and let N be an upper bound on 
the maximum number of elements ever stored in the q∗-
heap. Then, update and query operations are carried out 
in O (1 + log M

log log N ) worst-case time after an O (N) prepro-
cessing overhead. The q∗-heap uses linear space and is 
constructed in linear time.

Interpolation Search Trees: In [5], a dynamic data 
structure was presented that supports insertion/deletion 
in O (1) time w.c. as well as predecessor/successor queries 
in O (log log N) expected time w.h.p., given that the keys 
are drawn from a (Nα, Nβ)-smooth distribution, where 
0 < α, β < 1. It requires linear space.
3. The static ML-tree

In the following, we describe in detail the indexing 
scheme, which is termed as the Modified Layered Range 
Tree (ML-tree). This static data structure for the problem 
servers only as a step towards the dynamic solution and 
does not provide better complexities in total for the static 
case when compared to what is currently known.

3.1. The static non-linear-space ML-tree

The static non-linear ML-tree is stored as an array (A)

in memory, yet it can be visualized as a complete bi-
nary tree. The static data structure is an augmented binary 
search tree T on the set of points S that resembles a range 
tree. T stores all points in its leaves with respect to their 
x-coordinate in increasing order. Let H be the height of 
tree T . We denote by T v the subtree of T with root the 
internal node v .

Let P� be the root-to-leaf path for leaf � of T . We de-
note by P τ

� the subpath of P� consisting of nodes with 
depth ≥ τ . Similarly, P τ

�,le f t (P τ
�,right ) denotes the set of 

nodes that are left (right) children of nodes of P τ
� and do 

not belong to P τ
� . Let q = (qx, qy) be the point stored in 

leaf � of the tree where qx is its x-coordinate and qy is 
its y-coordinate. Pq denotes the search path for qx , i.e., it 
is the path from the root to � and it is equal to P� . We 
augment T as follows:

• Each internal node v stores a point qv , which is 
the point with the maximum y-coordinate among all 
points in its subtree T v . It also stores its depth.

• Each internal node v has a secondary data structure 
S v , which stores all points in T v with respect to y-
coordinate in increasing order. S v is implemented with 
an IS-tree as well as with an h-RMQ structure, where 
the maximum is w.r.t. the x-coordinate.

• Each leaf � stores arrays Lτ
� and Rτ

� , where 0 ≤ τ ≤
H − 1, corresponding to sets P τ

�,le f t and P τ
�,right re-

spectively. More specifically, they contain the points 
qv for each node v in the corresponding sets. These 
are sorted with respect to their y-coordinate and they 
are implemented with q∗-heaps and h-RMQ structures, 
where the maximum is w.r.t. the x-coordinate.

We also use an IS-tree T ′ to allows for efficient prede-
cessor/successor queries in the leaves of T . Finally, tree T
is preprocessed in order to support Lowest Common An-
cestor queries in O (1) time. Since T is static, one can use 
the methods of [3,4] to find the LCA (as well as its depth) 
of two leaves in O (1) time by attaching to each node of T
a label. We now move on to the description of the skyline 
query for a query range q = [a, b] × [d, +∞):

1. We use the IS-tree T ′ to find the two leaves �a and 
�b of T for the search paths Pa and Pb respectively. 
Let w be the LCA of leaves �a and �b and let τ be its 
depth.

2. The successor of d is located in Rτ (�a) and Lτ (�b)

and let these successors be at positions succR [d] and 
succL[d] respectively. In addition, let ν1 be the node 
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that has the following property: the y-coordinate of 
point qν1 belongs in the range [d, +∞) and it has the 
largest x-coordinate (the x-coordinate of qν1 falls in 
the [a, b] range because of Step 1) among all nodes 
in P τ

�a,right and P τ
�b,le f t .

3. By executing an h-RMQ in Lτ
�b

and Rτ
�a

arrays for the 
range [succL[d], τ ] and [succR [d], τ ] node ν1 is lo-
cated. The subtree Tν1 stores the point with the maxi-
mum x-coordinate among all points in the query range 
[a, b] × [d, +∞). By executing a successor query for d
in Sν1 returning the result succS [d], and then mak-
ing an h-RMQ in Sν1 for the range [succS [d], |Sν1 |], we 
find and report the required point with the maximum 
x-coordinate z = (zx, zy) that belongs to the skyline.

4. The query range now becomes q = [a, zx] × [zy, +∞)

and we repeat the previous steps until S ∩ q = �.

For each skyline point, we execute O (1) successor 
queries in total. Since the q∗-heap queries and all other 
steps can be carried out in O (1) time, the total time cost 
of the query algorithm is O (t · t I S(N)) where t I S(N) is the 
time required by an IS-tree for a successor query and t is 
the answer size. The space cost of the ML-tree is domi-
nated by the space used for implementing the Lτ

� , Rτ
� and 

S v sets, which is O (N log2 N) since each point is stored 
in O (log N) S v structures and each leaf � among the N
leaves in total, stores O (log N) Lτ

� and Rτ
� sequences each 

of which has size O (log N).

3.2. The main memory static linear-space ML-tree

We reduce the space of the data structure by employing 
a pruning technique [2,10] as follows: consider the nodes 
of T with height 2 log log N . These nodes are roots of sub-

trees of T of size O (log2 N) and there are � 
(

N
log2 N

)
such 

nodes. Let T1 be the tree whose leaves are these nodes and 
let T i

2 be the subtrees of these nodes for 1 ≤ i ≤ � 
(

N
log2 N

)
. 

We call T1 the first layer of the structure and the subtrees 
T i

2 the second layer.
T1 and each subtree T i

2 is implemented as a static non-
linear space ML-tree. The representative of each tree T i

2
is the point with the maximum y-coordinate among all 
points in T i

2. The leaves of T1 contain only the represen-
tatives of the respective trees T i

2. Each tree T i
2 is further 

pruned at height 2 log log log N resulting in trees T j
3 with 

�(log2 log N) elements. Once more, T i
2 contains the rep-

resentatives of the third layer trees in a similar way as 
before. Each tree T j

3 is structured as a table that stores 
all possible precomputed solutions. Specifically, each T j

3
is structured by using a q∗-heap with respect to the x-
coordinate as well as one with respect to the y-coordinate. 
In this way, we can extract the position of the successor in 
T j

3 with respect to x and y coordinates. What is needed 
to be computed for T j

3 is the point with the maximum 
x-coordinate that lies within a 3-sided range region. To 
obtain this, we use precomputation and tabulation for all 
possible results.
For the sake of generality, assume that the size of T j
3

is k. Let the points in T j
3 be q1, q2, . . . , qk sorted by x-

coordinate. Let their rank according to y-coordinate be 
given by the function α(i), 1 ≤ i ≤ k. Apparently, func-
tion α may generate all possible k! permutations of the 
k points. We make a four-dimensional table ANS, which 
is indexed by the number of permutations (one dimension 
with k! choices) as well as the possible positions of the 
successor (3 dimensions with k + 1 choices for the 3-sided 
range). Each cell of array ANS contains the position of the 
point with the maximum x-coordinate for a given permu-
tation that corresponds to a tree T j

3 and the 3-sided range. 
Each tree T j

3 corresponds to a permutation index that in-
dexes one dimension of table ANS. The other 3 indices are 
generated by one predecessor and one successor query on 
the x-coordinate and one successor query on the y coordi-
nate. The size of ANS for each T j

3 is O (k!(k + 1)3).
Let q = [a, b] × [d, +∞) be the initial range query. To 

answer this query on the three layered structure we ac-
cess the layer 3 trees containing a and b by using the T ′
tree. Then, we locate the subtrees T i

2 and T j
2 containing 

the representative leaves of the accessed layer 3 trees. The 
roots of these subtrees are leaves of T1. The ML query al-
gorithm described in Section 3.1 is executed on T1 with 
these leaves as arguments. Once we reach the node with 
the maximum x-coordinate, we continue in the layer 2 tree 
corresponding to the representative with the maximum 
x-coordinate located in T1. The same query algorithm is 
executed on this layer 2 tree and then we move simi-
larly to a tree T j

3 in the third layer. We make three in 
total successor queries for a, b, and d in T j

3 and we use 
the ANS table to locate the point with the maximum x-
coordinate by retrieving the permutation index of T j

3. Let 
the point z = (zx, zy) be the desired point at the third 
layer. We go back to T1. The range query now becomes 
q = [a, zx] × [zy, +∞) and we iterate as described in Sec-
tion 3.1.

The total space required for the data structure de-
pends on the size of each of the three layers. For the first 
layer, the ML-tree on the O  

(
N

log2 N

)
representatives re-

quires O  
(
( N

log2 N
) log2

(
N

log2 N

))
= O (N) space for the leaf 

structures (all P� structures for each leaf � are struc-
tured as q∗-heaps and h-RMQ structures requiring lin-
ear space). For the S v structures, the total space needed 
is O  

(
( N

log2 N
) log N

)
= O (N). A similar reasoning can be 

made for the second layer that consists of O  
(

N
log2 N

)

trees with O  
((

logN
log log N

)2
)

representative points of the 

third layer each for a total space of O (log2 N). In the 
third layer, we use linear space for the two predeces-
sor data structures (q∗-heaps) as well as a table of size 
O ((4 log2 log N)!(4 log2 log N + 1)3), which is O (N). The 
construction time of the data structure can be similarly 
derived taking into account that the ANS table can be 
constructed in O (N) time. The query time is bounded by 
the O (1) number of successor queries per actual resulting 
skyline point. The following lemma summarizes this dis-
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cussion and it will be used to design the dynamic data 
structure.

Lemma 1. Given a set of 2-d N points, we can store them in a 
static main memory data structure that can be constructed in 
O  (N log N) time using O (N) space. It supports skyline queries 
in a 3-sided range in O (t · t I S(N)) worst-case time, where t is 
the answer size and t I S(N) is the time required by an IS-tree for 
a predecessor/successor query.

4. The dynamic ML-tree

Making the ML-tree described in Section 3.2 dynamic 
involves all layers. The following issues must be tackled in 
order to make the ML-tree dynamic:

1. Use of a dynamic tree structure with care to how re-
balancing operations are performed.

2. The layer 3 trees must have variable size within a 
predefined range, rebuilding them appropriately as 
soon as they violate this bound (by splitting or merg-
ing/sharing with adjacent trees) - similarly, the permu-
tation index must be appropriately defined in order to 
allow for variable length permutations.

3. All arrays attached to nodes or leaves must be updated 
efficiently.

We use global rebuilding [9] to maintain the structure. 
In particular, let N0 be the number of elements stored at 
the time of the latest reconstruction. At the time when the 
number of updates exceeds rN0, where 0 < r < 1 is a con-
stant, the whole data structure is reconstructed taking into 
account that the number of elements is rN0. In this way, 
it is guaranteed that the current number of elements N
is always within the range [(1 − r)N0, (1 + r)N0]. We call 
the time between two successive reconstructions an epoch. 
The tree structure used for the first two layers is a weight-
balanced tree, like the B B[a]-trees [8].

Henceforth, assume for brevity that k = log2 log N . We 
impose that all trees at layer 3 will have size within the 
range [k/4, k]. To compute the permutation index, if the 
size of the layer 3 tree is < k, then we pad the increasing 
sequence of elements in the tree with +∞ values in order 
to have exactly size k.

Assume that an update operation takes place. The fol-
lowing discussion concerns the case of inserting a new 
point q = (qx, qy) since the case of deleting an existing 
point q from the structure is symmetric. First, T ′ is used to 
locate the predecessor of qx , and in particular to locate the 
tree T j

3 of layer 3 that contains the predecessor of qx . Then, 
T ′ is updated accordingly. The predecessor of qx in T j

3 is 
located by using the respective q∗-heap. If |T j

3| ∈ [k/4, k], 
then qx and qy are inserted in the respective q∗-heaps and 
a new permutation index is computed for T j

3. If |T j
3| > k, 

then T j
3 is split into two trees with size approximately 

k
2 . This means that 4 new q∗-heaps must be constructed 
while two new permutation indices must be computed for 
the two new trees. Let T i

2 be the layer 2 tree that gets 
the new leaf. Note that T i is affected either structurally, 
2
when one of its leaves � at layer 3 splits as in this case (�
is T j

3) or it is affected without structural changes, when 
qy is maximum among all the y-coordinates of T j

3 and 
thus the representative of T j

3 changes. In the latter case, all 
structures S v on the path P� of T i

2 must be updated with 
the new point. In addition, let v be the highest node with 
height hv in T i

2 that has pv = q (the point with the max-
imum y-coordinate in its subtree changes to q). Then, for 
all leaves � in the subtree of the father of v , the q∗-heaps 
for Lτ

� and Rτ
� as well as the h-RMQ structures that contain 

v will be updated, given that τ ≥ hv . In the former case, 
we make rebalancing operations on the internal nodes of 
T i

2 on the path P� . These rebalancing operations result in 
changing, as in the previous case, the q∗-heaps for the Lτ

�

and Rτ
� while the respective S v structures of the node v

that is rebalanced have to be recomputed as well. Similar 
changes happen to the tree T1 of the first layer given that 
either a tree of the second layer splits or its maximum el-
ement is updated. In case of deleting x, the 3 layers of the 
ML-tree are handled similarly.

Recall that the time complexity of the update opera-
tion supported by the IS-tree and q∗-heap is O (1). The 
change of the point with the maximum y-coordinate can 
always propagate from T j

3 to the root of T1. T j
3 can be up-

dated in O (|T j
3|) time since the two updates in q∗-heaps 

cost O (1) while the computation of the permutation index 
costs O (|T j

3|). Let the respective tree in the second layer 
be T i

2. Then, the cost for changing the point with the max-
imum y-coordinate in each node on the path from the leaf 
to the root of T i

2 is related to the update cost for the Lτ
�

and Rτ
� lists as well as for the S v structures. In particular, 

all O (|T i
2| log |T i

2|) lists Lτ
� and Rτ

� are updated (deletion of 
the previous point and insertion of the new one in a q∗-
heap) in O (|T i

2| log |T i
2|) time. Similarly, a deletion and an 

insertion is carried out in each S v structure in O (log |T i
2|)

total time. The same holds for the tree T1 netting a total 
complexity of O (|T1| log |T1|).

Rebalancing operations on the level 2 trees as well 
as on the level 1 tree of the structure may be applied 
when splits or fusions of leaves of level 2 trees take 
place. Since level 2 trees are exponentially smaller than 
the level 1 tree, the cost is dominated by the rebalanc-
ing operations at T1. Assume an update operation at a 
leaf � of T1. In the worst case, each S v structure may 
have to be rebuilt and similarly to the previous paragraph 
the Lτ

� and Rτ
� structures need to be updated. The to-

tal cost is equal to O (|T1| log2 |T1|) for the O (|T1| log |T1|)
lists while it is O (|T1|) for the S v structures since the re-
construction of the Sr structure of the root r dominates 
the cost. One can similarly reason for level 2 trees. How-
ever, the amortized cost is way lower for two reasons: 1. 
A leaf of T1 is updated roughly every O (log2N) update 
operations and 2. The weight property of the tree struc-
tures guarantees that costly operations are rare. By using a 
standard weight property argument along with the above 
two reasons we get that the amortized rebalancing cost is 
O  

(
log2 N + (|T1| log N)

N

)
. This amortized cost is dominated 

by the cost to update the maximum element, in which 
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case the worst-case as well as the amortized case coincide. 
Thus, we obtain the following theorem:

Theorem 1. Given a set of N points we can store them in a dy-
namic main memory data structure that uses O  (N) space and 
supports update operations in O  

(
N

log N

)
time in the worst case. 

It supports skyline queries in a 3-sided range in O (t · t I S(N))

worst-case time, where t is the answer size and t I S(N) is the 
time required by an IS-tree for a predecessor query.

Although rebalancing operations are efficient in an 
amortized sense, the change of maximum depends on 
the user and in the worst-case this change can propagate 
to the root in each update operation. We overcome this 
problem by making a rather strong assumption about the 
distribution of the points.

4.1. Exploiting the distribution of the elements

To reduce the huge worst-case update cost of Theo-
rem 1 we have to tackle the propagation of maximum 
elements. To accomplish this we assume that the coordi-
nates of the points are generated by discrete distributions. 
The result can also be attained by minor modifications for 
the case of continuous distributions. Assume that a new 
point q = (qx, qy) is to be inserted in the ML-tree. Let q
be stored in level 2 tree T i

2 based on qx . We call the point 
q violating if qy is the maximum y-coordinate among all 
y-coordinates of the points in T i

2. When a new point is vi-
olating it means that a costly update operation must be 
performed on T1. In the following, we show that under as-
sumptions on the generating distributions of the x and y
coordinates of points we can prove that during an epoch 
only O (log N) violations will happen.

We assume that all points have their x-coordinate gen-
erated by the same discrete distribution μ that is ( f1(N) =

N
(log log N)1+ε , f2(N) = N1−δ)-smooth, where ε > 0 and δ ∈
(0, 1) are constants. We also assume that the y coordi-
nates of all points are generated by a restricted set of 
discrete distributions Y , on the sample space {y1, y2, . . .}
such that yi < yi+1, ∀i ≥ 1. In particular, let an arbitrary 
point p = (px, p y) and let α = Pr[p y > y1].1 A distribution 

belongs in the family of distributions Y if α ≤
(

log N
N

) 1
log N

which tends to e−1 as n → +∞. The family of distri-
butions Y contain among others the Power Law and the 
Zipfian distributions. Finally, we assume that deletions are 
equiprobable for each existing point in the structure. In a 
nutshell, the structure requires that during an epoch tree 
T1 remains intact and only level 2 and level 3 trees are 
updated.

The construction of the static tree T1 now follows the 
lines of [5]. Assume that the x-coordinates are in the range 
[x1, x2]. Then, this range is recursively divided into f1(N)

subranges. The terminating condition for the recursion is 
when a subrange has ≤ log2 N elements. Note that the 

1 Probability that the y coordinate is strictly larger than the minimum 
element in the sample space {y1, y2, . . .}.
bounds of these subranges only depend on the proper-
ties of the distribution. This construction is necessary to 
ensure certain probabilistic properties for discrete distribu-
tions. However, instead of building an interpolation search 
tree, we build a binary tree on these subranges and then 
continue building the lists of the leaves and the internal 
nodes as in the previous structures. The elements within 
each subrange correspond to a level 2 tree whose leaves 
are level 3 trees. The following theorem regarding each 
epoch is obtained from [5]:

Theorem 2. The construction of the terminating subranges 
defining the level 2 trees can be performed in O (N) time in ex-
pectation with high probability. Each level 2 tree has �(log2 N)

points in expectation with high probability during an epoch.

The above theorem guarantees that the size of the 
buckets is not expected to change considerably and as a 
result we are allowed to assume that no update operations 
will happen on T1. This is the result of assuming that the 
x-coordinates of the points inserted are generated by an 
( N

(log log N)1+ε , N1−δ)-smooth distribution.

The reduction of the number of violating points during 
an epoch is attributed to our assumption that the y coordi-
nates follow a distribution that belongs to the Y family of 
distributions. All violating points are stored explicitly and 
since there are only a few in expectation during an epoch, 
we can easily support the query operation. After the end of 
the epoch, the new structure has no violating points stored 
explicitly. The following theorem from [6] guarantees the 
small number of violating points during an epoch:

Theorem 3. For a sequence of �(n) updates, the expected num-
ber of violations is O (logn), assuming that x coordinates are 
drawn from an (N/(log log N)1+ε, N1−δ)-smooth distribution, 
where ε > 0 and δ ∈ (0, 1) are constants, and the y coordinates 
are drawn from the restricted class of distributions Y with sam-
ple space {y1, y2, . . .}, where yi < yi+1, ∀i ≥ 1, such that it 

holds that α ≤
(

log N
N

) 1
log N → e−1 , where α = Pr[p y > y1] for 

an arbitrary point p = (px, p y).

The theorem that describes the result attained in this 
paper for 3-sided dynamic skyline queries follows:

Theorem 4. Given a set of N 2-d points, whose x coordinates 
are generated by an (N/(log log N)1+ε, N1−δ)-smooth distri-
bution, where ε > 0 and δ ∈ (0, 1) are constants, and the y
coordinates are drawn from the restricted class of distributions 
Y , we can store them in a dynamic main memory data struc-
ture that uses O  (N) space and supports update operations in 
O (log2 N log log N) expected time with high probability. It sup-
ports skyline queries in a 3-sided range in O  (t log log N) worst-
case time, where t is the answer size.
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