
Information Processing Letters 162 (2020) 105990

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Dynamic planar range skyline queries in log logarithmic

expected time

K. Doka a, A. Kosmatopoulos b,∗, A. Papadopoulos b, S. Sioutas c, K. Tsichlas b,
D. Tsoumakos c

a National Technical University of Athens, Computing Systems Lab, Athens, Greece
b Aristotle University of Thessaloniki, Data Engineering Laboratory, Thessaloniki, Greece
c Ionian University, Information Systems and Databases Laboratory, Corfu, Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 October 2018
Received in revised form 30 May 2019
Accepted 14 June 2020
Available online 30 June 2020
Communicated by Ryuhei Uehara

Keywords:
Skyline query
Data structures
Range query

The skyline of a set P of points consists of the “best” points with respect to minimization
or maximization of the attribute values. A point p dominates another point q if p is as
good as q in all dimensions and it is strictly better than q in at least one dimension. In
this work, we focus on the 2-d space and provide expected performance guarantees for
dynamic (insertions and deletions) 3-sided range skyline queries. We assume that the x
and y coordinates of the points are drawn from a class of distributions and present the
ML-tree (Modified Layered Range-tree), which attains O (log2 N log log N) expected update
time and O (t log log N) time with high probability for finding planar skyline points in a
3-sided query rectangle q = [a, b] × [d, +∞) in the RAM model, where N is the cardinality
of P and t is the answer size.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we study efficient algorithms with non-
trivial performance guarantees for dynamic planar skyline
processing. Let P denote the set of points in the data set.
Also, let pi denote the value of the i-th coordinate of a
point p. A point p ∈ P dominates another point q ∈ P
(q ≺ p) when ∀i, pi ≥ qi and ∃ j such that p j > q j . The
skyline of a set of points P contains the points that are
not dominated by any other point.

In this work, we present the ML (Modified Layered
Range) tree-structure that provides a loglogarithmic ex-
pected solution for finding planar skyline points in a
3-sided query rectangle [a, b] × [d, +∞) in the RAM

* Corresponding author.
E-mail addresses: katerina@cslab.ece.ntua.gr (K. Doka),

akosmato@csd.auth.gr (A. Kosmatopoulos), papadopo@csd.auth.gr
(A. Papadopoulos), sioutas@ionio.gr (S. Sioutas), tsichlas@csd.auth.gr
(K. Tsichlas), dtsouma@ionio.gr (D. Tsoumakos).
https://doi.org/10.1016/j.ipl.2020.105990
0020-0190/© 2020 Elsevier B.V. All rights reserved.
model under point insertions and deletions. This form of
query resembles a 3-sided range reporting query with
an additional skyline requirement and is handled by
the ML-Tree for points drawn from specific distribu-
tions in O (log2 N log log N) expected update time and
O (t log log N) query time w.h.p. The proposed data struc-
ture is inspired from the Modified Priority Search Tree pre-
sented in [6] that supports 3-sided range reporting queries.
However, the modifications to support skyline queries are
non-trivial. Note, that if the query range is defined as
[a, b] × (−∞, d] then the problem becomes harder since
the skyline can change dramatically based on the choice
of d. This is in fact the main reason for which the 4-sided
skyline query [1] is more expensive than the respective
3-sided skyline query.

The best previous solution was presented in [1] and
supports range skyline queries in O (

log N
log log N + t) worst

case time and updates in O (
log N

log log N) worst case time us-
ing linear space in the RAM model of computation. Al-

https://doi.org/10.1016/j.ipl.2020.105990
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2020.105990&domain=pdf
mailto:katerina@cslab.ece.ntua.gr
mailto:akosmato@csd.auth.gr
mailto:papadopo@csd.auth.gr
mailto:sioutas@ionio.gr
mailto:tsichlas@csd.auth.gr
mailto:dtsouma@ionio.gr
https://doi.org/10.1016/j.ipl.2020.105990

2 K. Doka et al. / Information Processing Letters 162 (2020) 105990
though their solution is optimal in the generic case, ML-
tree achieves better query time when the size of the re-
ported skyline is small (approximately t <

log N
log2 log N

) and
when the point coordinates follow specific class distribu-
tions.

Our work is organized as follows. Fundamental concepts
are presented in Section 2 while the ML-tree and its dy-
namic version are given in Sections 3 and 4, respectively.

2. Fundamental concepts

For the remainder of this work we adhere to the RAM
model of computation. We denote by N the number of el-
ements that reside in the data structures and by t the size
of the query.

Furthermore, throughout this work we make use of
(f1, f2)-smooth distributions for which we provide an in-
tuitive definition: “among a number (measured by f1(n) =
nα, α < 1) of consecutive subsets, each containing consecutive
keys from a universe U , no subset containing consecutive keys
from U should be too dense (measured by f2(n) = nδ, δ < 1)
compared to the others” (i.e., the distribution does not con-
tain sharp peaks). A detailed description of (f1, f2)-smooth
probability distributions can be found in [5].

Insertions follow a particular distribution among the
family of (f1, f2)-smooth distributions while deletions of
elements are equiprobable. That is, every element present
in the data structure is equally likely to be deleted [7]. In
the following, we describe the data structures that we use
in order to achieve the desired complexities.

Half-Range Minimum/Maximum Queries: The half-
Range Maximum Query (h-RMQ) problem asks to preprocess
an array A of size N such that, given an index range [r, N]
where 1 ≤ r ≤ N , we are asked to report the position of
the maximum element in this range on A. Notice that we
do not want to change the order of the elements in A,
in which case the problem would be trivial. This is a re-
stricted version of the general RMQ problem, in which the
range is [r, r′], where 1 ≤ r ≤ r′ ≤ N . In [4] the RMQ prob-
lem is solved in O (1) time using O (N) space and O (N)

preprocessing time. We could use this solution for our h-
RMQ problem, but in our case the problem can be solved
much simpler by maintaining an additional array Amax of
maximum elements for each on the N positions in the ini-
tial array.

q∗-heaps: The q∗-heap [11] is a data structure having
the following property: let M be the current number of el-
ements in the q∗-heap and let N be an upper bound on
the maximum number of elements ever stored in the q∗-
heap. Then, update and query operations are carried out
in O (1 + log M

log log N) worst-case time after an O (N) prepro-
cessing overhead. The q∗-heap uses linear space and is
constructed in linear time.

Interpolation Search Trees: In [5], a dynamic data
structure was presented that supports insertion/deletion
in O (1) time w.c. as well as predecessor/successor queries
in O (log log N) expected time w.h.p., given that the keys
are drawn from a (Nα, Nβ)-smooth distribution, where
0 < α, β < 1. It requires linear space.
3. The static ML-tree

In the following, we describe in detail the indexing
scheme, which is termed as the Modified Layered Range
Tree (ML-tree). This static data structure for the problem
servers only as a step towards the dynamic solution and
does not provide better complexities in total for the static
case when compared to what is currently known.

3.1. The static non-linear-space ML-tree

The static non-linear ML-tree is stored as an array (A)

in memory, yet it can be visualized as a complete bi-
nary tree. The static data structure is an augmented binary
search tree T on the set of points S that resembles a range
tree. T stores all points in its leaves with respect to their
x-coordinate in increasing order. Let H be the height of
tree T . We denote by T v the subtree of T with root the
internal node v .

Let P� be the root-to-leaf path for leaf � of T . We de-
note by P τ

� the subpath of P� consisting of nodes with
depth ≥ τ . Similarly, P τ

�,le f t (P τ
�,right) denotes the set of

nodes that are left (right) children of nodes of P τ
� and do

not belong to P τ
� . Let q = (qx, qy) be the point stored in

leaf � of the tree where qx is its x-coordinate and qy is
its y-coordinate. Pq denotes the search path for qx , i.e., it
is the path from the root to � and it is equal to P� . We
augment T as follows:

• Each internal node v stores a point qv , which is
the point with the maximum y-coordinate among all
points in its subtree T v . It also stores its depth.

• Each internal node v has a secondary data structure
S v , which stores all points in T v with respect to y-
coordinate in increasing order. S v is implemented with
an IS-tree as well as with an h-RMQ structure, where
the maximum is w.r.t. the x-coordinate.

• Each leaf � stores arrays Lτ
� and Rτ

� , where 0 ≤ τ ≤
H − 1, corresponding to sets P τ

�,le f t and P τ
�,right re-

spectively. More specifically, they contain the points
qv for each node v in the corresponding sets. These
are sorted with respect to their y-coordinate and they
are implemented with q∗-heaps and h-RMQ structures,
where the maximum is w.r.t. the x-coordinate.

We also use an IS-tree T ′ to allows for efficient prede-
cessor/successor queries in the leaves of T . Finally, tree T
is preprocessed in order to support Lowest Common An-
cestor queries in O (1) time. Since T is static, one can use
the methods of [3,4] to find the LCA (as well as its depth)
of two leaves in O (1) time by attaching to each node of T
a label. We now move on to the description of the skyline
query for a query range q = [a, b] × [d, +∞):

1. We use the IS-tree T ′ to find the two leaves �a and
�b of T for the search paths Pa and Pb respectively.
Let w be the LCA of leaves �a and �b and let τ be its
depth.

2. The successor of d is located in Rτ (�a) and Lτ (�b)

and let these successors be at positions succR [d] and
succL[d] respectively. In addition, let ν1 be the node

K. Doka et al. / Information Processing Letters 162 (2020) 105990 3
that has the following property: the y-coordinate of
point qν1 belongs in the range [d, +∞) and it has the
largest x-coordinate (the x-coordinate of qν1 falls in
the [a, b] range because of Step 1) among all nodes
in P τ

�a,right and P τ
�b,le f t .

3. By executing an h-RMQ in Lτ
�b

and Rτ
�a

arrays for the
range [succL[d], τ] and [succR [d], τ] node ν1 is lo-
cated. The subtree Tν1 stores the point with the maxi-
mum x-coordinate among all points in the query range
[a, b] × [d, +∞). By executing a successor query for d
in Sν1 returning the result succS [d], and then mak-
ing an h-RMQ in Sν1 for the range [succS [d], |Sν1 |], we
find and report the required point with the maximum
x-coordinate z = (zx, zy) that belongs to the skyline.

4. The query range now becomes q = [a, zx] × [zy, +∞)

and we repeat the previous steps until S ∩ q = �.

For each skyline point, we execute O (1) successor
queries in total. Since the q∗-heap queries and all other
steps can be carried out in O (1) time, the total time cost
of the query algorithm is O (t · t I S(N)) where t I S(N) is the
time required by an IS-tree for a successor query and t is
the answer size. The space cost of the ML-tree is domi-
nated by the space used for implementing the Lτ

� , Rτ
� and

S v sets, which is O (N log2 N) since each point is stored
in O (log N) S v structures and each leaf � among the N
leaves in total, stores O (log N) Lτ

� and Rτ
� sequences each

of which has size O (log N).

3.2. The main memory static linear-space ML-tree

We reduce the space of the data structure by employing
a pruning technique [2,10] as follows: consider the nodes
of T with height 2 log log N . These nodes are roots of sub-

trees of T of size O (log2 N) and there are �
(

N
log2 N

)
such

nodes. Let T1 be the tree whose leaves are these nodes and
let T i

2 be the subtrees of these nodes for 1 ≤ i ≤ �
(

N
log2 N

)
.

We call T1 the first layer of the structure and the subtrees
T i

2 the second layer.
T1 and each subtree T i

2 is implemented as a static non-
linear space ML-tree. The representative of each tree T i

2
is the point with the maximum y-coordinate among all
points in T i

2. The leaves of T1 contain only the represen-
tatives of the respective trees T i

2. Each tree T i
2 is further

pruned at height 2 log log log N resulting in trees T j
3 with

�(log2 log N) elements. Once more, T i
2 contains the rep-

resentatives of the third layer trees in a similar way as
before. Each tree T j

3 is structured as a table that stores
all possible precomputed solutions. Specifically, each T j

3
is structured by using a q∗-heap with respect to the x-
coordinate as well as one with respect to the y-coordinate.
In this way, we can extract the position of the successor in
T j

3 with respect to x and y coordinates. What is needed
to be computed for T j

3 is the point with the maximum
x-coordinate that lies within a 3-sided range region. To
obtain this, we use precomputation and tabulation for all
possible results.
For the sake of generality, assume that the size of T j
3

is k. Let the points in T j
3 be q1, q2, . . . , qk sorted by x-

coordinate. Let their rank according to y-coordinate be
given by the function α(i), 1 ≤ i ≤ k. Apparently, func-
tion α may generate all possible k! permutations of the
k points. We make a four-dimensional table ANS, which
is indexed by the number of permutations (one dimension
with k! choices) as well as the possible positions of the
successor (3 dimensions with k + 1 choices for the 3-sided
range). Each cell of array ANS contains the position of the
point with the maximum x-coordinate for a given permu-
tation that corresponds to a tree T j

3 and the 3-sided range.
Each tree T j

3 corresponds to a permutation index that in-
dexes one dimension of table ANS. The other 3 indices are
generated by one predecessor and one successor query on
the x-coordinate and one successor query on the y coordi-
nate. The size of ANS for each T j

3 is O (k!(k + 1)3).
Let q = [a, b] × [d, +∞) be the initial range query. To

answer this query on the three layered structure we ac-
cess the layer 3 trees containing a and b by using the T ′
tree. Then, we locate the subtrees T i

2 and T j
2 containing

the representative leaves of the accessed layer 3 trees. The
roots of these subtrees are leaves of T1. The ML query al-
gorithm described in Section 3.1 is executed on T1 with
these leaves as arguments. Once we reach the node with
the maximum x-coordinate, we continue in the layer 2 tree
corresponding to the representative with the maximum
x-coordinate located in T1. The same query algorithm is
executed on this layer 2 tree and then we move simi-
larly to a tree T j

3 in the third layer. We make three in
total successor queries for a, b, and d in T j

3 and we use
the ANS table to locate the point with the maximum x-
coordinate by retrieving the permutation index of T j

3. Let
the point z = (zx, zy) be the desired point at the third
layer. We go back to T1. The range query now becomes
q = [a, zx] × [zy, +∞) and we iterate as described in Sec-
tion 3.1.

The total space required for the data structure de-
pends on the size of each of the three layers. For the first
layer, the ML-tree on the O

(
N

log2 N

)
representatives re-

quires O
(
(N

log2 N
) log2

(
N

log2 N

))
= O (N) space for the leaf

structures (all P� structures for each leaf � are struc-
tured as q∗-heaps and h-RMQ structures requiring lin-
ear space). For the S v structures, the total space needed
is O

(
(N

log2 N
) log N

)
= O (N). A similar reasoning can be

made for the second layer that consists of O
(

N
log2 N

)

trees with O
((

logN
log log N

)2
)

representative points of the

third layer each for a total space of O (log2 N). In the
third layer, we use linear space for the two predeces-
sor data structures (q∗-heaps) as well as a table of size
O ((4 log2 log N)!(4 log2 log N + 1)3), which is O (N). The
construction time of the data structure can be similarly
derived taking into account that the ANS table can be
constructed in O (N) time. The query time is bounded by
the O (1) number of successor queries per actual resulting
skyline point. The following lemma summarizes this dis-

4 K. Doka et al. / Information Processing Letters 162 (2020) 105990
cussion and it will be used to design the dynamic data
structure.

Lemma 1. Given a set of 2-d N points, we can store them in a
static main memory data structure that can be constructed in
O (N log N) time using O (N) space. It supports skyline queries
in a 3-sided range in O (t · t I S(N)) worst-case time, where t is
the answer size and t I S(N) is the time required by an IS-tree for
a predecessor/successor query.

4. The dynamic ML-tree

Making the ML-tree described in Section 3.2 dynamic
involves all layers. The following issues must be tackled in
order to make the ML-tree dynamic:

1. Use of a dynamic tree structure with care to how re-
balancing operations are performed.

2. The layer 3 trees must have variable size within a
predefined range, rebuilding them appropriately as
soon as they violate this bound (by splitting or merg-
ing/sharing with adjacent trees) - similarly, the permu-
tation index must be appropriately defined in order to
allow for variable length permutations.

3. All arrays attached to nodes or leaves must be updated
efficiently.

We use global rebuilding [9] to maintain the structure.
In particular, let N0 be the number of elements stored at
the time of the latest reconstruction. At the time when the
number of updates exceeds rN0, where 0 < r < 1 is a con-
stant, the whole data structure is reconstructed taking into
account that the number of elements is rN0. In this way,
it is guaranteed that the current number of elements N
is always within the range [(1 − r)N0, (1 + r)N0]. We call
the time between two successive reconstructions an epoch.
The tree structure used for the first two layers is a weight-
balanced tree, like the B B[a]-trees [8].

Henceforth, assume for brevity that k = log2 log N . We
impose that all trees at layer 3 will have size within the
range [k/4, k]. To compute the permutation index, if the
size of the layer 3 tree is < k, then we pad the increasing
sequence of elements in the tree with +∞ values in order
to have exactly size k.

Assume that an update operation takes place. The fol-
lowing discussion concerns the case of inserting a new
point q = (qx, qy) since the case of deleting an existing
point q from the structure is symmetric. First, T ′ is used to
locate the predecessor of qx , and in particular to locate the
tree T j

3 of layer 3 that contains the predecessor of qx . Then,
T ′ is updated accordingly. The predecessor of qx in T j

3 is
located by using the respective q∗-heap. If |T j

3| ∈ [k/4, k],
then qx and qy are inserted in the respective q∗-heaps and
a new permutation index is computed for T j

3. If |T j
3| > k,

then T j
3 is split into two trees with size approximately

k
2 . This means that 4 new q∗-heaps must be constructed
while two new permutation indices must be computed for
the two new trees. Let T i

2 be the layer 2 tree that gets
the new leaf. Note that T i is affected either structurally,
2
when one of its leaves � at layer 3 splits as in this case (�
is T j

3) or it is affected without structural changes, when
qy is maximum among all the y-coordinates of T j

3 and
thus the representative of T j

3 changes. In the latter case, all
structures S v on the path P� of T i

2 must be updated with
the new point. In addition, let v be the highest node with
height hv in T i

2 that has pv = q (the point with the max-
imum y-coordinate in its subtree changes to q). Then, for
all leaves � in the subtree of the father of v , the q∗-heaps
for Lτ

� and Rτ
� as well as the h-RMQ structures that contain

v will be updated, given that τ ≥ hv . In the former case,
we make rebalancing operations on the internal nodes of
T i

2 on the path P� . These rebalancing operations result in
changing, as in the previous case, the q∗-heaps for the Lτ

�

and Rτ
� while the respective S v structures of the node v

that is rebalanced have to be recomputed as well. Similar
changes happen to the tree T1 of the first layer given that
either a tree of the second layer splits or its maximum el-
ement is updated. In case of deleting x, the 3 layers of the
ML-tree are handled similarly.

Recall that the time complexity of the update opera-
tion supported by the IS-tree and q∗-heap is O (1). The
change of the point with the maximum y-coordinate can
always propagate from T j

3 to the root of T1. T j
3 can be up-

dated in O (|T j
3|) time since the two updates in q∗-heaps

cost O (1) while the computation of the permutation index
costs O (|T j

3|). Let the respective tree in the second layer
be T i

2. Then, the cost for changing the point with the max-
imum y-coordinate in each node on the path from the leaf
to the root of T i

2 is related to the update cost for the Lτ
�

and Rτ
� lists as well as for the S v structures. In particular,

all O (|T i
2| log |T i

2|) lists Lτ
� and Rτ

� are updated (deletion of
the previous point and insertion of the new one in a q∗-
heap) in O (|T i

2| log |T i
2|) time. Similarly, a deletion and an

insertion is carried out in each S v structure in O (log |T i
2|)

total time. The same holds for the tree T1 netting a total
complexity of O (|T1| log |T1|).

Rebalancing operations on the level 2 trees as well
as on the level 1 tree of the structure may be applied
when splits or fusions of leaves of level 2 trees take
place. Since level 2 trees are exponentially smaller than
the level 1 tree, the cost is dominated by the rebalanc-
ing operations at T1. Assume an update operation at a
leaf � of T1. In the worst case, each S v structure may
have to be rebuilt and similarly to the previous paragraph
the Lτ

� and Rτ
� structures need to be updated. The to-

tal cost is equal to O (|T1| log2 |T1|) for the O (|T1| log |T1|)
lists while it is O (|T1|) for the S v structures since the re-
construction of the Sr structure of the root r dominates
the cost. One can similarly reason for level 2 trees. How-
ever, the amortized cost is way lower for two reasons: 1.
A leaf of T1 is updated roughly every O (log2N) update
operations and 2. The weight property of the tree struc-
tures guarantees that costly operations are rare. By using a
standard weight property argument along with the above
two reasons we get that the amortized rebalancing cost is
O

(
log2 N + (|T1| log N)

N

)
. This amortized cost is dominated

by the cost to update the maximum element, in which

K. Doka et al. / Information Processing Letters 162 (2020) 105990 5
case the worst-case as well as the amortized case coincide.
Thus, we obtain the following theorem:

Theorem 1. Given a set of N points we can store them in a dy-
namic main memory data structure that uses O (N) space and
supports update operations in O

(
N

log N

)
time in the worst case.

It supports skyline queries in a 3-sided range in O (t · t I S(N))

worst-case time, where t is the answer size and t I S(N) is the
time required by an IS-tree for a predecessor query.

Although rebalancing operations are efficient in an
amortized sense, the change of maximum depends on
the user and in the worst-case this change can propagate
to the root in each update operation. We overcome this
problem by making a rather strong assumption about the
distribution of the points.

4.1. Exploiting the distribution of the elements

To reduce the huge worst-case update cost of Theo-
rem 1 we have to tackle the propagation of maximum
elements. To accomplish this we assume that the coordi-
nates of the points are generated by discrete distributions.
The result can also be attained by minor modifications for
the case of continuous distributions. Assume that a new
point q = (qx, qy) is to be inserted in the ML-tree. Let q
be stored in level 2 tree T i

2 based on qx . We call the point
q violating if qy is the maximum y-coordinate among all
y-coordinates of the points in T i

2. When a new point is vi-
olating it means that a costly update operation must be
performed on T1. In the following, we show that under as-
sumptions on the generating distributions of the x and y
coordinates of points we can prove that during an epoch
only O (log N) violations will happen.

We assume that all points have their x-coordinate gen-
erated by the same discrete distribution μ that is (f1(N) =

N
(log log N)1+ε , f2(N) = N1−δ)-smooth, where ε > 0 and δ ∈
(0, 1) are constants. We also assume that the y coordi-
nates of all points are generated by a restricted set of
discrete distributions Y , on the sample space {y1, y2, . . .}
such that yi < yi+1, ∀i ≥ 1. In particular, let an arbitrary
point p = (px, p y) and let α = Pr[p y > y1].1 A distribution

belongs in the family of distributions Y if α ≤
(

log N
N

) 1
log N

which tends to e−1 as n → +∞. The family of distri-
butions Y contain among others the Power Law and the
Zipfian distributions. Finally, we assume that deletions are
equiprobable for each existing point in the structure. In a
nutshell, the structure requires that during an epoch tree
T1 remains intact and only level 2 and level 3 trees are
updated.

The construction of the static tree T1 now follows the
lines of [5]. Assume that the x-coordinates are in the range
[x1, x2]. Then, this range is recursively divided into f1(N)

subranges. The terminating condition for the recursion is
when a subrange has ≤ log2 N elements. Note that the

1 Probability that the y coordinate is strictly larger than the minimum
element in the sample space {y1, y2, . . .}.
bounds of these subranges only depend on the proper-
ties of the distribution. This construction is necessary to
ensure certain probabilistic properties for discrete distribu-
tions. However, instead of building an interpolation search
tree, we build a binary tree on these subranges and then
continue building the lists of the leaves and the internal
nodes as in the previous structures. The elements within
each subrange correspond to a level 2 tree whose leaves
are level 3 trees. The following theorem regarding each
epoch is obtained from [5]:

Theorem 2. The construction of the terminating subranges
defining the level 2 trees can be performed in O (N) time in ex-
pectation with high probability. Each level 2 tree has �(log2 N)

points in expectation with high probability during an epoch.

The above theorem guarantees that the size of the
buckets is not expected to change considerably and as a
result we are allowed to assume that no update operations
will happen on T1. This is the result of assuming that the
x-coordinates of the points inserted are generated by an
(N

(log log N)1+ε , N1−δ)-smooth distribution.

The reduction of the number of violating points during
an epoch is attributed to our assumption that the y coordi-
nates follow a distribution that belongs to the Y family of
distributions. All violating points are stored explicitly and
since there are only a few in expectation during an epoch,
we can easily support the query operation. After the end of
the epoch, the new structure has no violating points stored
explicitly. The following theorem from [6] guarantees the
small number of violating points during an epoch:

Theorem 3. For a sequence of �(n) updates, the expected num-
ber of violations is O (logn), assuming that x coordinates are
drawn from an (N/(log log N)1+ε, N1−δ)-smooth distribution,
where ε > 0 and δ ∈ (0, 1) are constants, and the y coordinates
are drawn from the restricted class of distributions Y with sam-
ple space {y1, y2, . . .}, where yi < yi+1, ∀i ≥ 1, such that it

holds that α ≤
(

log N
N

) 1
log N → e−1 , where α = Pr[p y > y1] for

an arbitrary point p = (px, p y).

The theorem that describes the result attained in this
paper for 3-sided dynamic skyline queries follows:

Theorem 4. Given a set of N 2-d points, whose x coordinates
are generated by an (N/(log log N)1+ε, N1−δ)-smooth distri-
bution, where ε > 0 and δ ∈ (0, 1) are constants, and the y
coordinates are drawn from the restricted class of distributions
Y , we can store them in a dynamic main memory data struc-
ture that uses O (N) space and supports update operations in
O (log2 N log log N) expected time with high probability. It sup-
ports skyline queries in a 3-sided range in O (t log log N) worst-
case time, where t is the answer size.

Declaration of competing interest

The authors declare that they have no conflict of inter-
est.

6 K. Doka et al. / Information Processing Letters 162 (2020) 105990
References

[1] Gerth Stølting Brodal, Konstantinos Tsakalidis, Dynamic planar range
maxima queries, in: ICALP, Springer-Verlag, 2011, pp. 256–267.

[2] Otfried Fries, Kurt Mehlhorn, A. Tsakalidis, et al., A log log n data
structure for three-sided range queries, Inf. Process. Lett. 25 (4)
(1987) 269–273.

[3] Dan Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology, Cambridge University Press,
1997.

[4] Dov Harel, Robert Endre Tarjan, Fast algorithms for finding nearest
common ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.

[5] Alexis Kaporis, Christos Makris, Spyros Sioutas, Athanasios Tsakalidis,
Kostas Tsichlas, Christos Zaroliagis, Dynamic interpolation search re-
visited, in: ICALP, Springer-Verlag, 2006, pp. 382–394.

[6] Alexis Kaporis, Apostolos N. Papadopoulos, Spyros Sioutas, Kon-
stantinos Tsakalidis, Kostas Tsichlas, Efficient processing of 3-sided
range queries with probabilistic guarantees, in: ICDT, ACM, 2010,
pp. 34–43.

[7] D.E. Knuth, Deletions that preserve randomness, IEEE Trans. Softw.
Eng. 3 (5) (1977) 351–359.

[8] Jürg Nievergelt, Edward M. Reingold, Binary search trees of bounded
balance, SIAM J. Comput. 2 (1) (1973) 33–43.

[9] Mark H. Overmars, The Design of Dynamic Data Structures, Lecture
Notes in Computer Science, vol. 156, Springer, 1983.

[10] Mark H. Overmars, Efficient data structures for range searching on a
grid, J. Algorithms 9 (2) (1988) 254–275.

[11] Dan E. Willard, Examining computational geometry, van emde boas
trees, and hashing from the perspective of the fusion tree, SIAM J.
Comput. 29 (3) (2000) 1030–1049.

http://refhub.elsevier.com/S0020-0190(20)30077-6/bib21884232D2ACF4D3381635DFEE95C930s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib21884232D2ACF4D3381635DFEE95C930s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib1637A5DE7B1FF634DAE228D20E0AFD24s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib1637A5DE7B1FF634DAE228D20E0AFD24s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib1637A5DE7B1FF634DAE228D20E0AFD24s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib192B4474176724D3F4341DC2E949DE70s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib192B4474176724D3F4341DC2E949DE70s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib192B4474176724D3F4341DC2E949DE70s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib1370123C1A24F40A9985F8582AB914FBs1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib1370123C1A24F40A9985F8582AB914FBs1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib425EFD20ACCED93B3CA61C1405A7EC8Ds1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib425EFD20ACCED93B3CA61C1405A7EC8Ds1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib425EFD20ACCED93B3CA61C1405A7EC8Ds1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibA709CB4C7B53752F2A4681FAE0E8E769s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibA709CB4C7B53752F2A4681FAE0E8E769s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibA709CB4C7B53752F2A4681FAE0E8E769s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibA709CB4C7B53752F2A4681FAE0E8E769s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib1DC72476497D1C99F9B274F3E77A91E9s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib1DC72476497D1C99F9B274F3E77A91E9s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibBF09AF06FD301D621A3622ACC8E2C0B7s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibBF09AF06FD301D621A3622ACC8E2C0B7s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib88A67137FAA31A5B51C66AE0C111B5C6s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bib88A67137FAA31A5B51C66AE0C111B5C6s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibBA975893FD7CCFDD4D4CFAA765921732s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibBA975893FD7CCFDD4D4CFAA765921732s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibD6604EBB590885CDABED4E29996D1B49s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibD6604EBB590885CDABED4E29996D1B49s1
http://refhub.elsevier.com/S0020-0190(20)30077-6/bibD6604EBB590885CDABED4E29996D1B49s1

	Dynamic planar range skyline queries in log logarithmic expected time
	1 Introduction
	2 Fundamental concepts
	3 The static ML-tree
	3.1 The static non-linear-space ML-tree
	3.2 The main memory static linear-space ML-tree

	4 The dynamic ML-tree
	4.1 Exploiting the distribution of the elements

	References

