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Abstract—Modern Big Data processing systems, scheduling
platforms and cloud infrastructures employ specialized hardware
accelerators such as GPUs, FPGAs, TPUs, ASICs, etc. to optimize
the execution of resource intensive workloads such as Machine
Learning, Artificial Intelligence or generic Data Analytics tasks.
Nevertheless, this support is mostly a user-dependent, manual
process that requires careful and educated decisions on both the
amount and type of required resources to exploit the underlying
hardware and achieve any user-defined higher level policies. In
this work we present the initial design of the HeterogeneRous
Scheduler (HRS), an intelligent scheduler that can make auto-
mated decisions on both how and where to map arbitrary data
analytics tasks to underlying cloud hardware that may consist of a
mix of hardware accelerators and clusters with general purpose
CPUs. We experimentally evaluate the performance trade-offs
between hardware accelerators and CPUs where we show that
there are cases where one technology outperforms the other. We
finally present an initial architecture of HRS where we depict its
different components and their interactions with the Big Data
framework and the cloud infrastructure.

I. INTRODUCTION

In the past years, we have witnessed an explosion in the
amount of data created and consumed worldwide, with an
estimation of the world’s digital universe data to exceed 44
zetabytes by 2020 [1]. On the one hand the three Vs of the
Big Data landscape (i.e., volume, velocity and veracity) along
with the need to extract meaningful insights from the collected
data has resulted in a number of different big data analytics
software systems. These systems are able to scale to thousands
of nodes and perform resource-hungry data intensive tasks
ranging from simple descriptive OLAP-like analysis (e.g.,
Spark SQL [2], Hive [3], Presto [4], Impala [5], Flink [6]
etc.) to more advanced predictive analytics such as Machine
Learning (ML) and Artificial Intelligence (AI) (e.g., Google’s
Tensorflow [7], Spark MLlib [8], etc.) in a fast and accurate
manner.

On the other hand, the fact that very popular algorithms
in the Machine Learning (ML) and Artificial Intelligence (AI)
domains can be efficiently executed over specialized hardware
has increased the popularity of hardware accelerators such as
GPUs, FPGAs and Google’s TPUs [9]. These devices combine
their massive execution parallelism capabilities with the in-
herently data parallel nature of the aforementioned workloads
and they are capable of “crunching” large amounts of data
in lightning speed, outperforming general purpose CPU-based
implementations in ML and AI workloads both in terms of
speed and accuracy [10].

The need to access and exploit the computing capabilities
of heterogeneous hardware in a massive manner has also

changed the typical model of cloud infrastructures in two
ways: First, most modern cloud vendors offer access to a
suite of specialized hardware accelerators on a pay-as-you-
go manner alongside general purpose CPUs (e.g., Amazon’s
EC2 Elastic GPUs1 or FPGA instances2, Google’s TPU3).
Second, typical cloud scheduling software systems such as
Apache Yarn [11] and Mesos4 that are employed to coordinate
complex task execution pipelines are starting to offer support
for heterogeneous hardware through their API over bare metal,
Virtual Machines or even Docker containers [12].

Most modern Big Data systems like Apache Spark and
Apache Hadoop [11], Flink [13], TensorFlow [7], etc. offer
the opportunity to leverage accelerators and benefit from their
increased performance. They are able to execute different
implementations of typical data intensive calculations over
various hardware including GPUs, FPGAs and TPUs in the
form of different kernels, i.e., routines compiled for high
throughput accelerators, separate from (but used by) a main
program. Kernel examples used in Big Data settings include
algorithms such as a Stochastic Gradient Descent optimization
or a matrix multiplication, typically encountered in a Machine
Learning Training. Kernel code must be implemented (i.e.,
ported) for the specific available hardware using accelerator-
dependent software development frameworks such as OpenCL
and CUDA, as opposed to the rest of the CPU-based code,
developed using higher level languages supported by the
chosen Big Data framework (typically Java, Scala or Python).

Users seem to have all the puzzle pieces: Big Data frame-
works that support the use of hardware-accelerated kernels,
cluster management tools that can allocate them to the under-
lying hardware and cloud offerings that provide such hetero-
geneous infrastructures. In reality, however, putting the pieces
together is not enough to always satisfy the user requirements
for increased performance and low cost. This is due to the
lack of an intelligent decision making process that can advise
users to make the best out of the available resources. Indeed,
as we observe in Section II, offloading parts of the code to
specialized hardware is not always the “silver bullet” that
can “automagically” solve fast and efficiently any typical Big
Data workload calculation: factors such as data transfer time
between RAM and GPUs, different algorithmic characteristics
(one-pass vs multi-pass), dataset sizes etc. play a very impor-

1https://aws.amazon.com/ec2/elastic-gpus/
2https://aws.amazon.com/ec2/instance-types/f1/
3https://cloud.google.com/tpu/
4https://www.nvidia.com/object/apache-mesos.html
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tant role in the end-to-end execution time or monetary cost,
rendering the scheduling decision a cumbersome process.

In this work we present the initial design of the Hetero-
geneRous5 Scheduler (HRS), an intelligent, hardware-aware
scheduler that can make educated decisions on how to map
a given workflow of data analytics tasks to the appropriate
underlying hardware for execution in order to optimize for any
user-defined policy (e.g., maximize performance, minimize
cost). The contributions of our work are the following:

• We experimentally evaluate the performance trade-offs
in a heterogeneous environment consisted of CPUs and
GPUs. Our study unravels a wide space for optimization
and validates the need of HRS, a scheduler capable of
allocating heterogeneous resources in an efficient manner.

• We present the preliminary architecture of our approach,
describing in detail the internal components of HRS as
well as its interaction with the Big Data framework, the
resource scheduler and the heterogeneous infrastructure.

In the remainder of this paper, Section II motivates our
problem with specific workload executions and algorithm im-
plementations over heterogeneous devices, Section III presents
a preliminary architecture of our proposed scheduler, Section
IV summarizes related work and, finally, Section V concludes
the paper.

II. MOTIVATION

In this Section, we describe a real-life scenario that can
benefit from HRS and discuss the importance of heterogeneous
systems for data processing. The described application is
driven by actual business needs and has been specified in the
context of the EU-funded E2Data project6.

Stock Market 
Stream

Pattern 
Recognition

Data 
Cleansing

NLP 
Pipeline

Fraud 
Detection

Fig. 1: Fraud-detection application graph

Let us consider a stream-processing engine that is used for
real-time fraud detection in a stream of stock market orders.
The identification of a fraud is performed based on the recogni-
tion of certain patterns in the stock time-series, correlated also
with relevant information in articles and textual content in the
social media. Such an application involves various algorithms
from different domains like data cleansing, text-analytics and
pattern recognition. As the output of an algorithm may be
needed as input for another one, different tasks interact with

5Pun intended.
6https://e2data.eu/

each other through well-defined data-dependencies. This way,
we can imagine the application as a graph of tasks where data
flow among its vertices.

Figure 1 presents the application graph for the fraud de-
tection case. Data is gathered from social media sources and
is fed to a data cleansing operator. Subsequently, the cleaned
text is processed by a series of natural language processing
(NLP) operators. At the same time, a stream of stock market
time-series is mined for patterns of interest. The results of the
pattern recognition task are joined with the annotated text and
a proprietary algorithm is applied for detecting frauds.

As the task described above should take place in real-time,
it is highly sensitive to latency issues. For optimizing its per-
formance, the development team conducted an experimental
analysis in order to identify the compute intensive tasks that
can potentially comprise a bottleneck in the data flow and
tried to offload their computation to hardware accelerators.
The employed NLP algorithms are embarrassingly parallel and
need only one-pass over the data. Moreover, calls to the GPU
can be asynchronous, masking out data transfer delays to and
from the device. As such, a GPU implementation could bring
a considerable speedup. Some preliminary results verified this
speculation and proved GPU to be the ideal target platform
for the specific task.

As implicitly mentioned, apart from compute efficiency,
data transfers also affect the task-device mapping decision. In
order to showcase our point, we experimented with the Rodinia
[14] benchmark. Rodinia is highly referenced in the literature
and contains OpenCL and OpenMP7 implementations for a
plethora of algorithms. We conducted experiments on three
different platforms:

• a multicore CPU system with 40 × Intel(R) Xeon(R)
Silver 4114 CPU @ 2.20GHz processors and 256 GB of
main memory

• a Tesla V100-SXM2 GPU with 32GB of memory
• a GeForce GTX 1060 GPU with 6GB of memory

Results for the Streamcluster and Hybridsort algorithms are
presented in Figure 2. Streamcluster is a clustering algorithm
for n-dimensional points, while Hybridsort sorts an array of
floats by performing a combination of the bucket-sort and
merge-sort algorithms. HtoD denotes the time needed to copy
data from the host’s memory to the device, while DtoH denotes
the data copy to the opposite direction. We observe that both
algorithms can be efficiently parallelized, and execution-wise
a GPU can offer great speedups. However, we point out that
as I/O operations can have a severe impact, processing time
by itself does not guarantee optimal end-to-end performance.

In the case of Streamcluster, processing dominates total
execution time and leads the fastest GPU to be the device of
preference. On the other hand, in the Hybridsort case, there is a
considerable amount of time spent on copying data. Although
the pure execution time is much smaller in the GPUs, the user
is going to experience a better end-to-end performance if the
multicore CPU system is selected.

7https://www.openmp.org/
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Fig. 2: Performance of Rodinia Hybridsort and Streamcluster for various devices

TABLE I: Heterogeneous Data Processing Systems

System Devices Application
Caffe [15] CPU/GPU ML

Torch7 [16] CPU/GPU/FPGA ML
Theano [17] CPU/GPU ML

Tensorflow [7] CPU/GPU/Mobile/TPU ML
MXNet [18] CPU/GPU/Mobile ML

Dandelion [19] CPU/GPU Ananlytics
LINQts [20] Mobile/FPGA Analytics

Spark [2] CPU/GPU ML/Analytics

The aforementioned examples highlight the need for sys-
tems of heterogeneous hardware. This need has already been
recognized and there are many systems that give the user the
option of which hardware platform should be employed for
each task. Table I shows the available compute platforms for
some well-known machine-learning and Big Data analytics
frameworks. However, in the majority of existing systems, we
meet one of the following problems:

• It is the user who needs to specify the target device for
each task.

• Scheduling ignores the application graph and works at
the task level.

• There is no information on the way scheduling works.

In this work, we argue that the manual tuning of an applica-
tion can be a really costly and time-consuming process. Thus,
we opt for an open-source scheduler that can automatically
identify the optimal mapping between tasks and devices in
order to minimize the execution time of the whole workflow.
Given the code of an application and a set of available
resources, HRS will be able to understand which tasks best
fit the execution model of each hardware platform and will
schedule them according to a global optimization function.

As HRS does not come with a specific Big Data framework,
it is important to be easily integrated with any state-of-the-art
data processing platform. In the following Section, we present
a modular design that will ensure the interoperability of HRS
with systems like Apache Spark, Flink, etc.
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Fig. 3: Components of the Heterogeneous Resource Scheduler
and their interactions.

III. HRS PRELIMINARY ARCHITECTURE

HRS aims to automatically optimize and plan the execution
of complex Big Data workflows containing both compute
and data intensive operators over a pool of heterogeneous
resources. In a nutshell, the business logic of the workflow is
reflected in code through the use of any Big Data framework of
choice. Given the Directed Acyclic Graph (DAG) of involved
tasks and based on performance and cost estimations for each
one of them, HRS optimizes for any user-defined optimization
policy by mapping tasks to the available heterogeneous infras-
tructure and by making informed decisions on the type and
amount of resources to be allocated. The final execution plan
is communicated to the Big Data framework, which enforces
it.

Figure 3 depicts the preliminary architecture of HRS, in-
cluding its internal components and their interaction with other
internal or external system components.

At an abstract level, the user submits through a user
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interface the code developed using her favorite Big Data
framework, along with the desired optimization policy (e.g.,
minimize execution time, minimize power consumption or
both). The code is passed to the Big Data execution engine,
where tasks are internally organized in a graph structure which
we will henceforth call task graph. At this point, it is the re-
sponsibility of HRS to instruct the Big Data framework where
to execute each task of the task graph. Having information
about: (a) the code itself along with the optimization objectives
form the user interface, (b) the task graph from the Big Data
framework and (c) monitoring information about the available
infrastructure, HRS can produce the optimal execution plan,
which allocates each task to the most beneficial set of hardware
resources among the available ones.

The basis of this workflow optimization process lies in the
utilization or detailed models of the cost and performance
characteristics of Big Data tasks over various underlying
hardware, be it CPUs, GPUs or FPGAs. The models are stored
and updated in a model library. Whenever a new workflow is
run atop HRS, these models are used in order to intelligently
assign and orchestrate workflow parts to the available hardware
according to the user optimization policy.

Once the optimal execution plan is available, the Big Data
framework enforces it through a cluster management frame-
work that can handle heterogeneous resources (e.g.,YARN,
Mesos). During runtime, the workflow execution is being
monitored for failures and/or performance degradation. In that
case, HRS dynamically adapts to the current conditions by
creating a new execution plan for the remaining tasks.

Delving into the internal of the proposed system, HRS
consists of two layers: (1) the Intelligence layer, depicted in
green, a Machine Learning modeling framework that derives
hardware- and elasticity-related knowledge from both offline
profiling and dynamic runs; and (2) the Hardware-Aware Plan-
ner, depicted in blue, that communicates with the Intelligence
layer and performs the decision making of how, where, and
when to schedule code for execution on the available hardware
resources.

In a nutshell, the modules of HRS cooperate towards the
optimization of Big Data workflow executions with respect to
the policy provided by the user. The Planner determines in
real-time where each task is to be run, under what amount
of resources provisioned and whether data need to be moved
to/from their current locations and between processing units.
Such a decision must rely on the characteristics of the in-
volved tasks, derived as code features by the Parser, and
the underlying hardware they are executed upon. These are
modeled and stored within the Models library. The initial
task models result from the offline profiling through the
Profiler/Modeler module that directly interacts with the pool
of physical resources and the monitoring layer in-between.
Moreover, while the workflow is being executed, the initial
models are refined in an online manner by the Model Refine-
ment module, using monitoring information of the actual run.
This mechanism allows for dynamic adjustments of the models
and enables the Planner to base its decisions on the most up-

to-date knowledge. Next we describe each of the internal HRS
components in a more detailed manner.

A. Parser

This module parses the user-provided code and extracts
code features such as density and computational or memory
intensity that will be used as input for the model training
process. Moreover, it validates the user-defined policy.

B. Profiler/Modeler

This module produces a number of different ML models
that describe the behaviour of each hardware processing unit,
in terms of performance, cost, energy efficiency etc., when
executing Big Data tasks. The descriptive models are initially
trained using profiling in an offline mode, as well as machine
learning over actual runs.

The profiling input includes: (a) data-specific parameters
which describe the data to be used for the operator profiling
(e.g., the type of data and its size) and (b) resource-related
parameters, which define the resources to be considered during
profiling (e.g., type of hardware, number of cores, amount of
available disk/memory, etc.).

The output of each run is the profiled performance and cost,
such as completion time, throughput, power consumption, etc.,
under each combination of the input parameter values. The
collected metrics along with the code-specific parameters, i.e.,
the features parsed by the Parser, are then used to create
estimation models, making use of neural networks, SVM,
interpolation and curve fitting techniques.

C. Models Library

This module consists of a number of different ML models
that describe the behaviour of each hardware processing unit,
in terms of performance, cost, energy efficiency etc., when
executing Big Data tasks.

D. Model Refinement

This module exploits the experience collected during run-
time to augment the existing performance models and increase
their efficiency. To that end, monitoring information is fed
back to the existing models to dynamically adapt them to the
current infrastructure conditions that might include changes in
the underlying hardware like hardware upgrades or temporal
degradation due to various reasons including collocation of
competing tasks, surges in load etc. Thus, the accuracy of the
models remains high regardless of possible changes.

E. Planner

The Planner is the core component of HRS which intel-
ligently explores all the possible execution plans over the
available heterogeneous infrastructure and discovers the most
beneficial one with respect to the user-defined optimization
objectives. The Planner takes as input (a) the task graph from
the Big Data framework, (b) the code features of each task of
the task graph through the Parser, (c) the available resources
through the infrastructure monitoring layer and (d) the cost and
performance estimation for each task over the various available
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hardware setups consulting the machine learning models of
the Models library. To find the optimal execution plan, the
planner relies on exhaustive search to explore all possible
allocations of individual tasks to hardware resources to find
the plan that optimizes the global optimization policy. The
optimization policy can include a single or multiple objectives,
meaning that one or a set of Pareto execution plans will be
discovered respectively. While an exhaustive search would
provide optimal solutions, it would only be practical for small
workflow instances, since the size of combinations to be
checked grows exponentially with the number of task graph
nodes. Thus, to be able to accommodate large and complex
workflow instances within a reasonable time-frame, HRS can
employ heuristics based on genetic algorithms to find near-
optimal solutions.

F. Execution Monitor

The responsibility of this module is to inspect the smooth
execution of the optimal plan through the monitoring of the un-
derlying infrastructure. Failures and performance degradation
must be detected early on to make the necessary adjustments
in a timely manner. The detection of such anomalies trigger the
re-planning of task executions according to the new circum-
stances in order to make amends. Remedial actions include
the compilation of the code for execution over a different type
of hardware and elastic contraction/expansion of provisioned
resources.

IV. RELATED WORK

Over the last years many systems that exploit heterogeneous
architectures have emerged. The related work is organized
along two axes: The first concerns Big Data processing frame-
works that exploit accelerators and support execution over
heterogeneous hardware, while the second includes scheduling
approaches that work in heterogeneous environments.

The well-known Google’s TensorFlow [7], a system used for
large-scale machine learning purposes, supports heterogeneous
execution. TensorFlow represents computations and operations
as a dataflow graph of tasks, where each task can be executed
on a system’s device (CPU, GPU or TPU). It is open-source
and its only limitation is that it is specifically used for machine
learning applications.

GFlink [13] is an in-memory computing architecture on
heterogeneous CPU-GPU clusters, an extension on the original
Apache Flink framework [6]. GFlink manages to exploit the
high performance of GPUs and to deal with the issue of data
transfer between CPU and CPU by proposing the GDST a
framework that automates the communication of the JVM
based Flink and the GPU device. Furthermore it introduces
the GWork Sheduler, a scheduler which uses a locality-
aware scheduling algorithm and a locality-aware work stealing
algorithm. GFlink is not open-source.

HeteroSpark [21], a GPU-accelerated heterogeneous archi-
tecture integrated with Apache Spark [22] and GPU-Spark
[23], a CPU-GPU hybrid data analytics system that enables
Spark to utilize GPUs parallel processing ability manage to

demonstrate sizeable performance improvements to original
Spark implementation. However they both struggle with data
transfer and communication between the heterogeneous sys-
tem devices, since data that need to be processed by GPUs
must be transferred from JVM memory to native memory and
finally to GPU memory.

LINQits: [20], Dandelion [19] support heterogeneous exe-
cution on CPU, GPU or FPGAs. The issue that occurs though
is how to find the optimal scheduling to map application tasks
to available resources.
In [24] the authors propose the HCI scheduler that accepts
as input the application DAG (Directed Acyclic Graph). Ex-
pressing applications as dataflow graphs is the most common
programming model in cloud systems, where nodes represent
computations and edges data dependencies between them. HCI
uses task runtime estimations, I/O estimations and also an
estimation of future resource availability to find the optimal
scheduling by testing all possible variations of task to resource
mapping.

The authors of TetriSched [25] tested a different approach.
They formulated the task to resource mapping and their exe-
cution time as a MILP (Mixed Integer Linear Programming)
problem, in which the solver finds the optimal job scheduling.
TetriSched is DAG-oblivious though, meaning that it is not
aware of the task relations in the application.

In [26] the authors formulated the problem of scheduling
using a machine learning approach. They do not represent
the application code as a task graph, but rather they extract
features from the application code, which they use to feed an
SVM [27] model that after trained is able to predict execution
times for unseen programs and place their execution on the
most suitable device.

Qilin [28] is an experimental heterogeneous programming
system that uses adaptive mapping, a fully automatic technique
to map computations to heterogeneous devices. It uses the
application DAG to build an analytical performance model
based on static analysis. It stores information that it has
collected in its lifetime which it then uses to make a projection
of a new program’s estimated execution time.

The work in [29] proposes a static solution build on the
OpenCL framework. After the compilation of a program the
system extracts static code features which it then uses to feed
an SVM model which predicts execution times for different
devices.

V. CONCLUSIONS

In this work we presented the initial design of HRS, a
HeterogeneRous scheduler that can automatically select the
appropriate type and size of resources to execute data analytics
tasks over heterogeneous cloud platforms. Our motivation
stems from both real-life scenarios and experimental obser-
vations. These observations showcased that there is no clear
winner in the choice of hardware architecture between general
purpose CPUs and hardware accelerators, since it depends on
numerous factors such as algorithm implementation, dataset
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size, hardware specifications, user policies, etc., HRS is ca-
pable of automatically deciding, deploying and managing
complex data analytics task workflows over a cloud-enabled
infrastructure that consists of different hardware accelerators
and clusters of general purpose CPUs. We showcased its initial
architecture that is based on a modular design and we have
depicted its interactions with external components such as the
Big Data Framework, the cloud infrastructure and the user.
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