
Heterogeneous k-Anonymization with High Utility
Katerina Doka∗, Mingqiang Xue†, Dimitrios Tsoumakos‡, Panagiotis Karras§, Alfredo Cuzzocrea¶ and Nectarios Koziris∗

∗National Technical University of Athens, Greece, {katerina,nkoziris}@cslab.ece.ntua.gr
†I2R, Singapore, xuem@i2r.a-star.edu.sg

‡Ionian University, Greece, dtsouma@ionio.gr
§Skoltech, Russia, karras@skoltech.ru

¶University of Trieste and ICAR-CNR, Italy, alfredo.cuzzocrea@dia.units.it

Abstract—Among the privacy-preserving approaches that are
known in the literature, k-anonymity remains the basis of more
advanced models while still being useful as a stand-alone solution.
Applying k-anonymity in practice, though, incurs severe loss
of data utility, thus limiting its effectiveness and reliability in
real-life applications and systems. However, such loss in utility
does not necessarily arise from an inherent drawback of the
model itself, but rather from the deficiencies of the algorithms
used to implement the model.Conventional approaches rely on
a methodology that publishes data in homogeneous generalized
groups. An alternative modern data publishing scheme focuses
on publishing the data in heterogeneous groups and achieves
higher utility, while ensuring the same privacy guarantees. As
conventional approaches cannot anonymize data following this
heterogeneous scheme, innovative solutions are required for this
purpose. Following this approach, in this paper we provide a set
of algorithms that ensure high-utility k-anonymity, via solving
an equivalent graph processing problem.

I. INTRODUCTION

The imperative to protect the privacy of individuals [1]
requires that a certain privacy guarantee be observed when
sharing data among agents such as public organizations and
private corporations, while disclosing as much information
as possible. A popular such guarantee is provided by the k-
anonymity model, which requires that the records in a released
table should be recast, so that any combination of values on
a set of quasi-identifying attributes (QI) can be indistinctly
matched to at least k (or none) individuals therein [2]. This
model has been extended and specialized in several forms [3],
[4], [5], [6] and other alternatives have been suggested [7],
[8]; however, k-anonymity remains a fundamental prerequisite
of more advanced models and useful as a stand-alone device
in its own right. For example, microtargeted advertising sys-
tems in online social networks, even while refraining from
selling users’ personal information to advertisers, may still
inadvertently reveal a user’s personal information when an
adversary targets an advertisement to a particular user’s set of
quasi-identifier values [9]. A remedy for this problem requires
privacy protections built in by design. Such a protection would
be to ensure that an advertiser’s targeting criteria never fit less
than k user profiles, i.e., to apply the advertising criteria on
k-anonymized data indeed. Therefore, the k-anonymity model
remains topical and relevant in novel settings, and preferable
to noise addition techniques in many cases [10], [11].

Despite its usefulness in principle, a concern about the

applicability of k-anonymity in practice has been caused by a
perception that the loss of data utility it engenders would be
too large to bear [12], an effect exacerbated as the number of
dimensions (QI attributes) grows [13]. However, such loss in
utility does not necessarily arise from an inherent drawback
of the model itself, but rather from the deficiencies of the
algorithms used to implement the model. Indeed, conventional
microdata anonymization algorithms have typically departed
from the assumption that all recast records whose QI values
are meant to match the original values of a record t must
be assigned identical QI values to each other [2]; thereby,
sanitized records are clustered in disjoint homogeneous groups
of the same QI values, called equivalence classes [2]. Brickell
and Shmatikov first discerned that “there is no privacy reason”
for this homogeneity requirement [12]; they speculated that
a strategy using directed acyclic graphs may fare better. In
our view, the message to be drawn from [13] and [12] is not
a negative, pessimist view that obtaining higher data utility
under k-anonymity is impossible, but rather a call for k-
anonymization algorithms that do obtain higher data utility
by dropping the constraints of previous research. Moreover,
we argue that such utility may also be gained at the expense
of runtime, if a tradeoff between the two emerges. As the
anonymization process is an one-off process, some additional
runtime is always worth investing for the sake of obtaining
higher utility.

This paper provides such algorithms. We observe that some
attempts already made in this direction [14], [15], [16], [17],
[18] do not define the problem in the most general terms;
they introduce superfluous constraints in their solutions or
solve the problem by trivially suppressing some values. We
keep away from such superfluities and explore the potential
to obtain high data utility by value generalization under the
k-anonymity model. We handle the problem of high-utility
k-anonymization by value generalization as an assignment
problem on a bipartite graph. To our knowledge, we are the
first to address this problem in such terms.

Our approach differs from preceding research in the form
of its solutions, which provide better utility, while it provides
the same privacy guarantee and recasts data values in the same
syntactic way as previous research. A recasting of tuples can
be represented by a directed graph, the generalization graph
[17], that shows how the values of original records match those
of anonymized ones. In the bipartite view of the graph, an edge

r4

r2
r3 r4 r5 r6 r7 r8

r1’
r2’
r3’ r4’ r5’ r6’ r7’ r8’

r1

r2 r3

r1

r5

r6

r7
r8

Bipartite view Unified view

r4

r2
r3 r4 r5 r6 r7 r8

r1’
r2’
r3’ r4’ r5’ r6’ r7’ r8’

r1

r2

r3

r1

r5

r6

r7
r8

Bipartite view Unified view

r4

r2
r3 r4 r5 r6 r7 r8

r1’
r2’
r3’ r4’ r5’ r6’ r7’ r8’

r1

r2

r3

r1

r5

r6

r7 r8

Bipartite view Unified view
r4

r2
r3 r4 r5 r6 r7 r8

r1’
r2’
r3’ r4’ r5’ r6’ r7’ r8’

r1

r2

r3

r1

r5

r6

r7
r8

Bipartite view Unified view

(a) Homogeneous (b) Ring-based (c) Heterogeneous Reciprocal (d) Freeform

Fig. 1. Generalization types in graph view

from the vertex standing for an original record, ri, to the one
standing for a recast record, r′j , indicates that the QI values
of ri are included in (match) those of r′j . In the unified view,
a single vertex represents both the original record ri and its
recast form r′i.

Figure 1(a) shows the kind of generalization graph con-
structed by conventional k-anonymization algorithms obeying
the homogeneity requirement [2], [19], [20]. In the bipartite
view, the partitioning forms two disconnected complete sub-
graphs of four vertices in each side (i.e., two K4,4 bicliques),
hence obeys 4-anonymity. These subgraphs correspond to
the equivalence classes formed by those methods; in the
unified view, they appear as complete digraphs with self-
loops. Previous works [15], [17] eschewed the redundant
homogeneity requirement so as to achieve higher utility; still,
they resorted to another superfluous requirement, namely that
the generalization graph be a ring: a cyclical order of vertices
is defined, and each vertex matches its predecessors and/or
successors over this order. Figure 1(b) shows such a graph.

We propose that homogeneity be eschewed without intro-
ducing any other constraint in its place. A corollary of homo-
geneity is reciprocity [17]: when record ri matches the recast
form r′j of another record rj , then rj matches r′i too; thus, the
generalization graph is symmetric. To illustrate the distinction
between the two, Figure 1(c) shows a generalization graph
that is reciprocal (records match each other mutually), but
heterogenous (no record has the same matchings as another).
Going further, we can eschew reciprocity too, and aim to
construct an entirely unconstrained generalization graph that
maximizes utility by value generalization. To our knowledge,
our work is the first to define this problem in such terms. A
freeform generalization is illustrated by the graph in Figure
1(d).

The advantages of our approach are illustrated by the
example in Table I. The top table presents the values of eight
tuples on QI attributes Age and Salary. By our method, these
tuples are anonymized as in the bottom left table; each tuple
is recast to a range of values, so as to be compatible with, or
match, three original tuples, and vice versa, as the bottom right
table shows; this property is called 3-regularity. This property
and a randomization scheme guarantee that each original tuple
has three equiprobable identities [15]; thus, k-regularity is a
sufficient condition for k-anonymity.

Figure 2(a) presents the data of Table I in a 2d coordinate
system where the x-axis stands for Age and the y-axis for
Salary. Each tuple ti is represented as a point ri in this coor-

ID t0 t1 t2 t3 t4 t5 t6 t7

Age 59 57 39 28 41 37 40 53
Salary 25 27 47 41 20 59 35 34

ID Age Salary Original Matches Anon/zed Matches
t′0 53-59 25-34 t0 t′0, t′1, t′4 t′0 t0, t1, t7
t′1 53-59 25-34 t1 t′0, t′1, t′7 t′1 t0, t1, t7
t′2 28-39 41-59 t2 t′2, t′5, t′6 t′2 t2, t3, t5
t′3 28-41 20-59 t3 t′2, t′3, t′5 t′3 t3, t4, t5
t′4 40-59 20-35 t4 t′3, t′4, t′6 t′4 t0, t4, t6
t′5 28-39 41-59 t5 t′2, t′3, t′5 t′5 t2, t3, t5
t′6 39-41 20-47 t6 t′4, t′6, t′7 t′6 t2, t4, t6
t′7 40-57 27-35 t7 t′0, t′1, t′7 t′7 t1, t6, t7

TABLE I
EXAMPLE DATA ANONYMIZED BY OUR METHOD

dinate system (shown by a black circle in the figure). An arrow
from ri to rj denotes that ri matches the anonymized tuple
for rj . The matching relationships in Table I are thus shown
in Figure 2(a). For clarity, we present the same matchings in
pure (unified) graph form as well, without positioning points
by their coordinates, in Figure 2(b).

25

30

35

40

45

50

55

60

20

Sa
la

ry
 (‘

00
0)

25 30 35 45 50 55 60 40

r0

r1

r2 r3

r4

r5

r6 r7

65

65 15
Age

r1

r5

r7
r0

r6

r4

r2

r3

(a) Graph in 2d plane (b) Pure graph
Fig. 2. Example solution

The full version of this paper appears in [21], where a
complete experimental evaluation and analysis of proposed
algorithms is also provided.

II. DEFINITIONS AND PRINCIPLES

We consider a dataset D = (Q,P) of n tuples. Q =
{q1, . . . , qn}, where qi is the quasi-identifier part of tuple i
and P = {p1, . . . , pn} is the rest of the record, not considered
to contain potentially identifying information. Our task is to

recast the values of quasi-identifying attributes in Q, producing
an anonymized form thereof, Q′ = {q′1, . . . , q′n}. In this
recasting, we allow the value of qi on attribute Aj , qji , to be
substituted by a set of possible values V(qji); as in previous
work [2], [19], [20], for a numerical attribute, we publish a
range of values defined by that set, as shown in Table I, while
for a categorical attribute we publish that set itself. We say that
(the quasi-identifier part of) an original tuple qi and a recast
tuple q′` match each other when q′` could be a recast from of
qi, i.e., each qji is included in V(qj`). The privacy guarantee
of k-anonymity [2] is then defined as follows:

Definition 1: An anonymized data set D′=(Q′, P) satisfies
k-anonymity with respect to the original data D= (Q,P) iff
each original record qi ∈ D matches at least k published
records in D′, each having, from an adversary’s perspective,
equal probability (at most 1

k) to be the true match of qi.
This guarantee ensures that an adversary knowing the quasi-

identifying part of all records, Q, is not able to identify the
true match of a record qi with probability higher than 1

k . We
describe a collection of one-to-one matches encompassing a
complete set of original and recast records as an assignment.

Definition 2: Given a data set D = (Q,P) and a recast
version thereof, D′ = (Q′, P), an assignment α from D to
D′ is an one-to-one mapping, α = {(qi1 , q′j1), . . . , (qin , q

′
jn
)},

such that each qi∈Q is mapped to exactly one q′j ∈Q′, where
qi matches q′j . In each pair (qi, q′j) ∈ α, we say that qi is the
preimage of q′j and q′j is the postimage of qi. Two assignments
αs and αt are disjoint if αs ∩ αt = ∅.

In order to achieve k-anonymity, we need to ensure that
there exist k disjoint assignments from original tuples in Q to
recast tuples in Q′. A set of k disjoint assignments defines k
distinct matches in Q′ for each qi ∈ Q and vice versa, i.e., k
distinct matches in Q for each q′i ∈ Q′. The net result can be
represented by a generalization graph [17], as in Figure 1.

Definition 3: Given a data set D=(Q,P) and its anonymi-
zed version D′=(Q′, P), a generalization graph G = (V,E)
is a directed graph in which each vertex v ∈ V stands for an
original/anonymized tuple qi ∈ Q and q′i ∈ Q′, and an edge
(vi, vj) ∈ E is present iff qi matches q′j .

Our definition corresponds to the unified view of such a
graph (see Figure 1). In a bipartite view, the vertex standing
for an original tuple qi is separate from that standing for its
anonymized form q′i. A set of k disjoint assignments defines
(and is defined by) a generalization graph in which each vertex
has exactly k outgoing and k incoming edges, i.e., a k-regular
generalization graph [17]. By constructing a set of k such
assignments, we determine that the set of possible values of a
tuple q′i∈Q′ on an attribute Aj , V(qji), should include those of
the tuples in Q mapped to q′i. As shown in [22], once we have
a k-regular generalization graph, we can randomly regenerate
a set of k disjoint assignments, select one of them uniformly
at random as the one that defines the true matches between
D and D′, and publish any other attributes of our data (i.e., in
P) accordingly. We reiterate that the random character of this
process ensures the equiprobability property of k-anonymity.

Based on the preceding discussion, the problem of k-anony-

mization is translated to a problem of determining a k-regular
generalization graph from original to anonymized tuples, and
then generalize the attribute values of each anonymized tuple
q′i so as to include the values of its k matches. We aim to
find a generalization graph that achieves low information loss.
Previous research [23], [20], [15], [5], [6] has used several
variants of a Global Certainty Penalty (GCP) as a measure
of information loss. We opt for a similar metric, in which we
distinguish between numerical and categorical attributes in a
way that reflects the way we publish the data. For a numerical
attribute Aj , published as a range, we define the Normalized
Certainty Penalty, NCP , for a recast tuple q′i as follows:

NCPj(q
′
i) =

uji − l
j
i

U j − Lj
(1)

where uji (lji) is the largest (smallest) value of attribute Aj in
the set of possible values of q′i, V(q

j
i), (i.e., among the matches

of q′i), and U j (Lj) is the largest (smallest) value in the domain
of attribute Aj . The published ranges prevent the determination
of an individual’s presence in the data, while they can be used
for query processing assuming uniform distribution of values
within a range [23], [20]. On the other hand, in case Aj is a
categorical attribute, we define the NCP for a recast tuple q′i
as follows:

NCPj(q
′
i) =

countj(q
′
i)− 1

|Aj | − 1
(2)

where countj(q
′
i) is the number of distinct values of at-

tribute Aj in V(qji), and |Aj | is the cardinality of the domain
of Aj . A similar metric is employed in [15]. By definition,
the NCP obtains values between 0 and 1, where 0 signifies
no information loss and 1 signifies the maximum information
loss for the attribute in question. Then the GCP for a set of
recast tuples Q′ is defined as:

GCP (Q′) =

∑
q′i∈Q′

∑
j NCPj(q

′
i)

d · |Q′|
(3)

where j is the index of any attribute Aj in Q, d is the
number of all such attributes, and |Q′| the number of tuples
in Q and Q′. Our definition of GCP is the average value
of NCP among all attributes and all tuples. We aim to
minimize this GCP value, hence the problem of optimal k-
anonymization calls for satisfying the k-anonymity guarantee
with a minimal reduction in the utility of the original data:

Problem 1: Given a data set D = (Q,P), transform D to
an anonymized form D′ that satisfies k-anonymity, such that
GCP (Q′) is minimized.

III. THE GREEDY ALGORITHM

The methodology proposed in [15] and adopted in [17]
creates a fixed k-regular ring generalization graphs, without
taking into account the actual data values involved. However,
the information loss incurred by the anonymization process
eventually depends on the exact form of graph built over
the data. Unfortunately, the problem of building a graph that

minimizes information loss is not addressed in [15], [17]. As
we discussed, [15] uses a fixed-form solution and [17] follows
suit by adopting it. Our contribution lies exactly on this graph
construction process. We aim to build the graph in a way
that minimizes the information lost by value generalization
or achieves a near-minimal value of it.

In this section we set up to design a practicable and efficient
algorithm for our problem, aiming to achieve near to optimal
data utility. Our strategy starts out from the following obser-
vation: Instead of striving to build a k-regular generalization
graph over the data at once, we can do so in a sequence of
k distinct iterations, adding a single assignment to the graph
under construction at each iteration.

Let G = (S, T,E) be a bipartite graph with the vertex
set S standing for original tuples (pre-images) and the vertex
set T standing for the recast records (post-images) we aim to
define, where |S| = |T | = n. The assignment selection starts
out with G being a complete graph. Initially, the weight of
each edge ei,j from Si to Tj , wi,j is defined as the GCP that
will be incurred if the tuple qj at vertex Tj is recast so as
to include the tuple qi at vertex Si; for brevity, we call this
the cost of recasting qj as {qi, qj}. At each iteration of our
algorithm, we aim to find an assignment (i.e., a set of n edges
covering all vertices) from S to T that achieves a low total
sum of edge weights. After each iteration, the selected edges
are discarded from the graph, and the weights of remaining
edges are redefined so as to reflect the new state of affairs.
Thus, a redefined weight wi,j reflects the increase of GCP
that will be incurred if we extend the set of possible values
of tuple qj at Tj to include the values of tuple qi at Si (i.e.,
if we recast qj as {qi, qj}). In effect, at each iteration we
attempt to increase the total GCP as little as possible. After
k iterations, a k-regular generalization graph is constructed.
In fact, the first iteration is redundant, since the self-matching
assignment, having zero information loss, is chosen by default.
Thus, there are k − 1 iterations that matter.

We now discuss the details of assignment selection at each
iteration. We sequentially process all vertices in S. For each
such Si ∈S we select the edge ei,j , matching it to a Tj ∈T ,
that has the minimum weight wi,j . In other words, we greedily
match each qi to the qj that incurs the least GCP increase.
Thereafter, we omit Si from S and its chosen match Tj from
T . This O(n2) process terminates when all pre-image vertices
in S have been matched, and hence all post-image vertices in
T have been used.

Nevertheless, the termination of the process outlined above
is not guaranteed. Given that at each iteration the degree
of each vertex is reduced by one, at the `th iteration, our
algorithm works on an incomplete bipartite graph where each
pre-image in S connects to n−`+1 vertices of T , and vice
versa, i.e., on an (n− `+1)-regular bipartite graph. While
it is always possible to extract an assignment from such a
graph, the process outlined above may encounter a dead-end,
in case all n−`+1 possible matches of a certain vertex Si have
already been matched to preceding vertices of S and are hence
unavailable. To resolve this problem, when we encounter such

a dead-end, we perform a backtracking process as follows.

Algorithm 1: Greedy Algorithm Iteration
Data: A weighted bipartite graph G = (S, T,E)
Result: An assignment A with weight close to minimum
while S 6= � do1

select next vertex Si ∈ S;2
if @ available vertex in T connected to Si then3

find Si−x matched to Tj such that ei,j and ei−x,m are4
available;
substitute ei−x,m for ei−x,j ;5

else6
select Tj such that wi,j is the minimum of all edges7
incident to Si;

S = S − Si, T = T − Tj ;8
Add ei,j to A;9

return A;10

Assume that a dead-end is encountered when processing
vertex Si in the `th iteration, i.e. there exists no available match
between Si and any remaining vertex of T . Then we backtrack
to vertex Si−1, which has been already matched to a vertex
Tj ∈T by edge ei−1,j , and check whether two edges as follows
are available:

1) The edge ei,j , so that Tj can be assigned as a match to
Si.

2) Any edge ei−1,m between Si−1 and any vertex Tm ∈ T ,
so that Si−1 can obtain another available match in T
instead.

In case such available edges exist, we add edge ei,j to the
constructed matching and substitute ei−1,j by ei−1,m (in case
more than one Tm are available, we select the one of minimum
wi−1,m). Otherwise, backtracking continues with vertex Si−2,
and goes on until it finds an eligible candidate Si−x. A pseudo-
code for a single iteration of this Greedy algorithm is shown
in Algorithm 1.

The backtracking process forces a dead-end vertex Si to
obtain the first available match Tj of a predecessor vertex
Si−x. However, while the match of Si−x has been selected
as the one of minimum edge weight, such a consideration
is not taken into account during backtracking. Therefore, we
should better ensure that the vertices in S are examined
in an order such that it is likely that neighboring vertices
have similar attribute values. To achieve this effect, we
first sort the tuples in S by a lexicographic order of their
attribute values, positioning these attributes from lower to
higher cardinality. Putting attributes of lower cardinality at a
higher position in this order ensures that large value changes
among consecutive tuples are less frequent; for instance, the
order {{a, 1}, {a, 3}, {b, 2}, {b, 4}}, obtained by positioning
the low-cardinality alphabetic attribute of these four tuples
first, is better than {{1, a}, {2, b}, {3, a}, {4, b}}, obtained by
positioning the high-cardinality numerical attribute first.

IV. THE SORTGREEDY ALGORITHM

The algorithm we presented in Section III is greedy in the
sense that it makes a greedy choice when it selects the lightest
available edge of each vertex, while scanning vertices in S
sequentially. Nevertheless, this process does not necessarily

lead to good edge choices from a global view. For example,
assume that edges ei,j and ek,j are both available for pickup,
while wi,j > wk,j and Si is the next vertex to be processed.
Then, assuming ei,j is the lightest edge incident to Si, it will
be picked up; thus, ek,j will be rendered unavailable, even
though it was a better choice of edge from a global (though
still greedy) perspective.

Motivated by this observation, we propose an enhanced
greedy algorithm, which we call SortGreedy. The external
shell of the algorithm remains the same, i.e., it operates over k
iterations, with each iteration striving to select an assignment
that brings about a small increase of the total GCP , and edge
weights properly redefined among iterations. What differs is
the internal edge selection process within each iteration. We
outline this process below.

Algorithm 2: SortGreedy Algorithm Iteration
Data: A weighted bipartite graph G = (S, T,E)
Result: An assignment A with weight close to minimum
Sort edges E by ascending weight;1
while E 6= � do2

Select ei,j with minimum weight;3
if Si ∈ S and Tj ∈ T then4

S = S − Si, T = T − Tj ;5
Remove ei,j from E;6
Add ei,j to A;7

if ∃ unmatched vertices then8
foreach unmatched vertex Si ∈ S do9

find Sy matched to Tj such that ei,j and ey,m are10
available;
substitute ey,m for ey,j and add ei,j to A;11

return A;12

We first sort all edges in E by ascending weight at
O(n2 log n) cost. Then, instead of scanning a vertex list S,
we scan the sorted list of edges instead and try to pick up
good edges directly therefrom. For each encountered edge,
ei,j , we check whether its adjacent vertices, Si and Tj , are
both available for matching. If that is the case, we select ei,j
as a match and remove it from E, while also removing Si from
S and Tj from T , as they are no longer available for matching.
Otherwise, we proceed to the next edge in the sorted list, until
all edges are examined.

As with our basic Greedy algorithm, the above process
may not terminate successfully, i.e., it may not have built
a perfect matching of n edges after one pass through the
edge list; some vertices may remain unmatched even after
all edges have been processed. If this is the case, we call a
backtracking procedure similar to the one outlined in Section
III. We scan the vertex list S, in lexicographic order, so as to
detect unmatched vertices; for each such vertex Si we look for
an eligible substitution candidate among its neighbors in the
lexicographic order; now we look not only at its predecessors,
but at both predecessors and successors, as already-matched
vertices can be found anywhere in the lexicographically or-
dered list. However, the essence of the backtracking process
remains the same. Algorithm 2 presents the basic iteration of
this SortGreedy algorithm. As the complexity of an iteration
is dominated by the sorting step, the overall complexity of

SortGreedy is O(kn2 log n).

V. CONCLUSIONS

This paper casts new light on the k-anonymity privacy
model, which remains a prerequisite for more advanced mod-
els as well as a useful device in its own right. We treat
k-anonymization as a graph processing problem, aiming to
minimize the information lost by value generalization. While
previous works suggested the graph analogy, they either im-
posed superfluous constraints, or employed value suppression,
compromising data utility in both cases. We devise solutions
for the most general form of the problem, achieving sig-
nificantly lower information loss. Conceived in this manner,
the problem amounts to building a k-regular bipartite graph
that defines an anonymization of high utility. Our techniques
provide the same privacy guarantee as previous research on
k-anonymity, as well as security against adversaries reverse-
engineering the algorithm.

REFERENCES

[1] R. Wacks, Privacy. A very short introduction, ser. Very short introduc-
tions. Oxford University Press, 2010, vol. 221.

[2] P. Samarati, “Protecting respondents’ identities in microdata release,”
IEEE TKDE, vol. 13, no. 6, pp. 1010–1027, 2001.

[3] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“`-diversity: Privacy beyond k-anonymity,” ACM TKDD, vol. 1, no. 1,
p. 3, 2007.

[4] N. Li, T. Li, and S. Venkatasubramanian, “Closeness: A new privacy
measure for data publishing,” IEEE TKDE, vol. 22, no. 7, pp. 943–956,
2010.

[5] J. Cao, P. Karras, P. Kalnis, and K.-L. Tan, “SABRE: a Sensitive
Attribute Bucketization and REdistribution framework for t-closeness,”
The VLDB Journal, vol. 20, no. 1, pp. 59–81, 2011.

[6] J. Cao and P. Karras, “Publishing microdata with a robust privacy
guarantee,” PVLDB, vol. 5, no. 11, pp. 1388–1399, 2012.

[7] C. Dwork, “Differential privacy,” in ICALP (2), 2006.
[8] R. Chaytor and K. Wang, “Small domain randomization: Same privacy,

more utility,” PVLDB, vol. 3, no. 1, pp. 608–618, 2010.
[9] A. Korolova, “Privacy violations using microtargeted ads: A case study,”

in ICDM Workshops, 2010.
[10] N. Li, W. H. Qardaji, and D. Su, “On sampling, anonymization, and

differential privacy or, k-anonymization meets differential privacy,” in
ASIACCS, 2012.

[11] C. Clifton and T. Tassa, “On syntactic anonymity and differential
privacy,” in PrivDB, 2013.

[12] J. Brickell and V. Shmatikov, “The cost of privacy: destruction of data-
mining utility in anonymized data publishing,” in KDD, 2008.

[13] C. C. Aggarwal, “On k-anonymity and the curse of dimensionality,” in
VLDB, 2005.

[14] A. Gionis, A. Mazza, and T. Tassa, “k-anonymization revisited,” in
ICDE, 2008.

[15] W. K. Wong, N. Mamoulis, and D. W. L. Cheung, “Non-homogeneous
generalization in privacy preserving data publishing,” in SIGMOD, 2010.

[16] T. Tassa, A. Mazza, and A. Gionis, “k-concealment: An alternative
model of k-type anonymity,” Transactions on Data Privacy, vol. 5, no. 1,
pp. 189–222, 2012.

[17] M. Xue, P. Karras, C. Raı̈ssi, J. Vaidya, and K.-L. Tan, “Anonymizing
set-valued data by nonreciprocal recoding,” in KDD, 2012.

[18] K. Choromanski, T. Jebara, and K. Tang, “Adaptive anonymity via
b-matching,” in NIPS, 2013, pp. 3192–3200. [Online]. Available:
http://papers.nips.cc/paper/4858-adaptive-anonymity-via-b-matching

[19] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Workload-
aware anonymization techniques for large-scale datasets,” ACM
TODS, vol. 33, no. 3, pp. 17:1–17:47, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1386118.1386123

[20] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “A framework for
efficient data anonymization under privacy and accuracy constraints,”
ACM TODS, vol. 34, no. 2, pp. 1–47, 2009.

[21] K. Doka, M. Xue, D. Tsoumakos, and P. Karras, “k-anonymization by
freeform generalization,” in ASIACCS, 2015.

[22] W. K. Wong, N. Mamoulis, and D. W. L. Cheung, “Non-homogeneous

generalization in privacy preserving data publishing,” in SIGMOD, 2010.
[23] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “Fast data anonymi-

zation with low information loss,” in VLDB, 2007.

